[1] D.R.G. de Faria, L. de O. Arinelli,, J.L. de Medeiros, O. de Q.F. Araújo, Novel ethylene oxide production with improved sustainability: Loss prevention via supersonic separator and carbon capture, J. Environ. Manage. 269 (2020) 110782. [2] G. Pio, E. Salzano, Implementation of gas-phase kinetic model for the optimization of the ethylene oxide production, Chem. Eng. Sci. 212 (2020) 115331. [3] J.P. Dever, W.C. Hoffman, H. Soo, Ethylene oxide, in: Kirk-Othmer Encycl. Chem. Technol., John Wiley & Sons, Inc., Hoboken, NJ, USA, 632-673(2004). [4] C. Stegelmann, N.C. Schiødt, C.T. Campbell, P. Stoltze, Microkinetic modeling of ethylene oxidation over silver, J. Catal. 221 (2004) 630-649. [5] K. Zhao, J. Li, W. Chen, Y. Ma, Separation and recovery of ethylene oxide from direct oxidation product of ethylene, involves contacting feed gas mixture with ethylene carbonate/water, absorbing ethylene oxide, heating, stripping, and recycling absorption liquid, China Pat., 102911137-A, 2013. [6] J. Chu, Z. Zhang, L. Dong, S. Chen, K. Yin, T. Ying, Q. Li, W. Cheng, Experimental, modeling and process simulation studies of ethylene oxide absorption, Fluid Phase Equilibria 524 (2020) 112719. [7] A.J. Kamphuis, F. Picchioni, P.P. Pescarmona, CO2-fixation into cyclic and polymeric carbonates: principles and applications, Green Chem. 21 (2019) 406-448. [8] C. Choomwattana, A. Chaianong, W. Kiatkittipong, P. Kongpanna, A.T. Quitain, S. Assabumrungrat, Process integration of dimethyl carbonate and ethylene glycol production from biomass and heat exchanger network design, Chem. Eng. Process. Process Intensif. 107 (2016) 80-93. [9] B.-Y. Yu, M.-K. Chen, I.-L. Chien, Assessment on CO2 utilization through rigorous simulation: converting CO2 to dimethyl carbonate, Ind. Eng. Chem. Res. 57 (2018) 639-652. [10] L. Chen, Simulation and Analysis of Ethylene Oxide Process, PhD Thesis, Beijing University of Chemical Technology, China, 2017. (in Chinese). [11] T. Ying, X. Tan, Q. Su, W. Cheng, L. Dong, S. Zhang, Polymeric ionic liquids tailored by different chain groups for the efficient conversion of CO2 into cyclic carbonates, Green Chem. 21 (2019) 2352-2361. [12] B.-H. Xu, J.-Q. Wang, J. Sun, Y. Huang, J.-P. Zhang, X.-P. Zhang, S.-J. Zhang, Fixation of CO2 into cyclic carbonates catalyzed by ionic liquids: A multi-scale approach, Green Chem. 17 (2014) 108-122. [13] M. Honda, M. Tamura, Y. Nakagawa, K. Tomishige, Catalytic CO2 conversion to organic carbonates with alcohols in combination with dehydration system, Catal. Sci. Technol. 4 (2014) 2830-2845. [14] R.A. Shiels, C.W. Jones, Homogeneous and heterogeneous 4-(N, Ndialkylamino)pyridines as effective single component catalysts in the synthesis of propylene carbonate, J. Mol. Catal. Chem. 261 (2007) 160-166. [15] X. Meng, Z. Ju, S. Zhang, X. Liang, N. von Solms, X. Zhang, X. Zhang, Efficient transformation of CO2 to cyclic carbonates using bifunctional protic ionic liquids under mild conditions, Green Chem. 21 (2019) 3456-3463. [16] X. Zhang, T. Gundersen, S. Roussanaly, A.L. Brunsvold, S. Zhang, Carbon chain analysis on a coal IGCC -CCS system with flexible multi-products, Fuel Process. Technol. 108 (2013) 146-153. [17] H. Chen, X. Zhang, B. Wu, D. Bao, S. Zhang, J. Li, W. Lin, Analysis of dual fluidized bed gasification integrated system with liquid fuel and electricity products, Int. J. Hydrog. Energy. 41 (2016) 11062-11071. |