[1] G. Chaplin, T. Pugsley, C. Winters, Monitoring the fluidized bed granulation process based on S-statistic analysis of a pressure time series, Aaps Pharmscitech. 6(2) (2005) E198-E201. [2] D. Vervloet, J. Nijenhuis, J.R. van Ommen, Monitoring a lab-scale fluidized bed dryer:A comparison between pressure transducers, passive acoustic emissions and vibration measurements, Powder Technol. 197(1) (2010) 36-48. [3] C.A.M. Silva, M.R. Parise, F.V. Silva, O.P. Taranto, Control of fluidized bed coating particles using Gaussian spectral pressure distribution, Powder Technol. 212(3) (2011) 445-458. [4] S.H. Schaafsma, T. Marx, A.C. Hoffmann, Investigation of the particle flowpattern and segregation in tapered fluidized bed granulators, Chem. Eng. Sci. 61(14) (2006) 4467-4475. [5] T.M. Gernon, M.A. Gilbertson, Segregation of particles in a tapered fluidized bed, Powder Technol. 231(2012) 88-101. [6] D.C. Sau, S. Mohanty, K.C. Biswal, Minimum fluidization velocities and maximum bed pressure drops for gas-solid tapered fluidized beds, Chem. Eng. J. 132(1) (2007) 151-157. [7] L.T. Fan, T. Ho, S. Hiraoka, W.P. Walawender, Pressure fluctuations in a fluidized bed, AIChE J. 27(3) (1981) 388-396. [8] H.T. Bi, A critical review of the complex pressure fluctuation phenomenon in gas-solids fluidized beds, Chem. Eng. Sci. 62(13) (2007) 3473-3493. [9] J. van der Schaaf, J.C. Schouten, C.M. van den Bleek, Origin, propagation and attenuation of pressure waves in gas-solid fluidized beds, Powder Technol. 95(3) (1998) 220-233. [10] C.E. Davies, A. Carroll, R. Flemmer, Particle size monitoring in a fluidized bed using pressure fluctuations, Powder Technol. 180(3) (2008) 307-311. [11] C.E. Davies, D. Krouse, A. Carroll, A new approach to the identification of transitions in fluidized beds, Powder Technol. 199(1) (2010) 107-110. [12] S. Gheorghiu, J.R. van Ommen, M.O. Coppens, Power-law distribution of pressure fluctuations in multiphase flow, Phys. Rev. E Statal Nonlinear & Soft Matter Phys. 67(4) (2003) 41305. [13] J. Gómez-Hernández, J. Sánchez-Prieto, J.V. Briongos, D. Santana, Wide band energy analysis of fluidized bed pressure fluctuation signals using a frequency division method, Chem. Eng. Sci. 105(2014) 92-103. [14] M. Wormsbecker, R. van Ommen, J. Nijenhuis, H. Tanfara, T. Pugsley, The influence of vessel geometry on fluidized bed dryer hydrodynamics, Powder Technol. 194(1) (2009) 115-125. [15] H. Kage, M. Agari, H. Ogura, Y. Matsuno, Frequency analysis of pressure fluctuation in fluidized bed plenum and its confidence limit for detection of various modes of fluidization, Adv. Powder Technol. 11(4) (2000) 459-475. [16] G. Chaplin, T. Pugsley, C. Winters, Application of chaos analysis to pressure fluctuation data from a fluidized bed dryer containing pharmaceutical granule, Powder Technol. 142(2) (2004) 110-120. [17] J.R. van Ommen, M.O. Coppens, C.M. van den Bleek, J.C. Schouten, Early warning of agglomeration in fluidized beds by attractor comparison, AIChE J. 46(11) (2000) 2183-2197. [18] J.C. Schouten, C.M. van den Bleek, Monitoring the quality of fluidization using the short-term predictability of pressure fluctuations, AIChE J. 44(1) (1998) 48-60. [19] H. Jiang, H. Chen, J. Gao, J. Lu, Y. Wang, C. Wang, Characterization of gas-solid fluidization in fluidized beds with different particle size distributions by analyzing pressure fluctuations in wind caps, Chem. Eng. J. 352(2018) 923-939. [20] M. Wormsbecker, T. Pugsley, H. Tanfara, Interpretation of the hydrodynamic behaviour in a conical fluidized bed dryer, Chem. Eng. Sci. 64(8) (2009) 1739-1746. [21] J. Xiang, Q. Li, A. Wang, Y. Zhang, Mathematical analysis of characteristic pressure fluctuations in a bubbling fluidized bed, Powder Technol. 333(2018) 167-179. [22] J. Gómez-Hernández, D. Serrano, A. Soria-Verdugo, S. Sánchez-Delgado, Agglomeration detection by pressure fluctuation analysis during Cynara cardunculus L. gasification in a fluidized bed, Chem. Eng. J. 284(2016) 640-649. [23] L. de Martín, K. van den Dries, J.R. van Ommen, Comparison of three different methodologies of pressure signal processing to monitor fluidized-bed dryers/granulators, Chem. Eng. J. 172(1) (2011) 487-499. [24] F. Johnsson, R.C. Zijerveld, J.C. Schouten, C.M. van den Bleek, B. Leckner, Characterization of fluidization regimes by time-series analysis of pressure fluctuations, Int. J. Multiphas. Flow 26(4) (2000) 663-715. [25] H. He, X. Lu, W. Shuang, et al., Statistical and frequency analysis of the pressure fluctuation in a fluidized bed of non-spherical particles, Particuology 16(2014) 178-186. [26] S.M. Okhovat-Alavian, J. Behin, N. Mostoufi, Investigating the flow structures in semi-cylindrical bubbling fluidized bed using pressure fluctuation signals, Adv. Powder Technol. 30(6) (2019) 1247-1256. [27] T. Pugsley, G. Chaplin, P. Khanna, Application of advanced measurement techniques to conical lab-scale fluidized bed dryers containing pharmaceutical granule, Food Bioprod. Process. 85(3) (2007) 273-283. [28] A. Burggraeve, T. Monteyne, C. Vervaet, J.P. Remon, T.D. Beer, Process analytical tools for monitoring, understanding, and control of pharmaceutical fluidized bed granulation:A review, Eur. J. Pharm. Biopharm. 83(1) (2013) 2-15. [29] C.A.M. Da Silva, J.J. Butzge, M. Nitz, O.P. Taranto, Monitoring and control of coating and granulation processes in fluidized beds-A review, Adv. Powder Technol. 25(1) (2014) 195-210. [30] J.R. van Ommen, J.C. Schouten, M.L.M. Vander Stappen, C.M. van den Bleek, Response characteristics of probe-transducer systems for pressure measurements in gas-solid fluidized beds:how to prevent pitfalls in dynamic pressure measurements, Powder Technol. 106(1999) 199-218. [31] D. Geldart, Types of gas fluidization, Powder Technol. 7(1973) 285-292. [32] C.M.H. Brereton, J.R. Grace, The transition to turbulent fluidization, Chem. Eng. Res. Des. 70(1992) 246-251. [33] A. Chehbouni, J. Chaouki, C. Guy, D. Klvana, Characterization of the flow transition between bubbling and turbulent fluidization, Ind. Eng. Chem. Res. 33(8) (1994) 1889-1896. |