[1] W. Raza, J. Lee, N. Raza, Y. Luo, K. Kim, J. Yang, Removal of phenolic compounds from industrial waste water based on membrane-based technologies, J. Ind. Eng. Chem. 71(2019) 1-18. [2] L. Yin, Z. Shen, J. Niu, J. Chen, Y. Duan, Degradation of pentachlorophenol and 2,4-Dichlorophenol by sequential visible-light driven photocatalysis and laccase catalysis, Environ. Sci. Technol. 44(2010) 9117-9122. [3] L.G.C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee, K.E. Taylor, N. Biswas, A short review of techniques for phenol removal from wastewater, Curr. Pollut. Rep. 2(2016) 157-167. [4] M.S. Álvarez, L. Gómez, R.G. Ulloa, F.J. Deive, M.A. Sanromán, A. Rodríguez, Antibiotics in swine husbandry effluents: laying the foundations for their efficient removal with a biocompatible ionic liquid, Chem. Eng. J. 298(2016) 10-16. [5] W. Nie, F. Wang, R. Hao, L. Zhang, Q. Chen, F. Wei, X. Li, R. Loffredo, Z. Liu, Y. Liu, New method of aqueous two phase with solid phase extraction (ATP-SPE) for detection of sulfonamides, Microchem. J. 150(2019) 104076. [6] K.M. Sousa, L.H.Z. Merlo, M.N. Marques, E.B. Cavalcanti, R.L. Souza, C.M.F. Soares, A.S. Lima, Partitioning of diuron in a novel aqueous two-phase system based on polyols and tetrahydrofuran, Fluid Phase Equilib. 429(2016) 325-330. [7] S.C. Silvério, O. Rodríguez, J.A. Teixeira, E.A. Macedo, The effect of salts on the liquidliquid phase equilibria of PEG600+ salt aqueous two-phase systems, J. Chem. Eng. Data 58(2013) 3528-3535. [8] C.E. de Araújo Padilha, S.D. de Oliveira Júnior, D.F. de Santana Souza, J.A. de Oliveira, G.R. de Macedo, E.S.D. Santos, Partition coefficient prediction of Baker’s yeast invertase in aqueous two phase systems using hybrid group method data handling neural network, Chin. J. Chem. Eng. 25(2017) 652-657. [9] Z. Tan, C. Wang, Y. Yi, H. Wang, M. Li, W. Zhou, S. Tan, F. Li, Extraction and purification of chlorogenic acid from ramie (Boehmeria nivea L. Gaud) leaf using an ethanol/salt aqueous two-phase system, Sep. Purif. Technol. 132(2014) 396-400. [10] C.C. Ibarra-Herrera, O. Aguilar, M. Rito-Palomares, Application of an aqueous twophase systems strategy for the potential recovery of a recombinant protein from alfalfa (Medicago sativa), Sep. Purif. Technol. 77(2011) 94-98. [11] B. Mokhtarani, R. Karimzadeh, M.H. Amini, S.D. Manesh, Partitioning of ciprofloxacin in aqueous two-phase system of poly(ethylene glycol) and sodium sulphate, Biochem. Eng. J. 38(2008) 241-247. [12] L.R. de Lemos, R.A. Campos, G.D. Rodrigues, L.H.M. Da Silva, M.C.H. Da Silva, Green separation of copper and zinc using triblock copolymer aqueous two-phase systems, Sep. Purif. Technol. 115(2013) 107-113. [13] J. Li, X. Li, Y. Liu, J. Zhang, Removal of mercaptans from light oils using ionic liquid-NaOH aqueous solution as extractants, Chin. J. Chem. Eng. 25(2017) 171-174. [14] F. Luechau, T.C. Ling, A. Lyddiatt, Partition of plasmid DNA in polymer-salt aqueous two-phase systems, Sep. Purif. Technol. 66(2009) 397-404. [15] R.D. Rogers, K.R. Seddon, Chemistry. Ionic liquids—solvents of the future? Science. 302(2003) 792-793. [16] M.T. Zafarani-Moattar, H. Shekaari, P. Jafari, Design of novel biocompatible and green aqueous two-phase systems containing cholinium L-alaninate ionic liquid and polyethylene glycol di-methyl ether 250 or polypropylene glycol 400 for separation of bovine serum albumin (BSA), J. Mol. Liq. 254(2018) 322-332. [17] K.E. Gutowski, G.A. Broker, H.D. Willauer, J.G. Huddleston, R.P. Swatloski, J.D.H. And, R.D. Rogers, Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations, J. Am. Chem. Soc. 125(2003) 6632. [18] R.L.S. de França Do, R.L. Rosário, F.O. Souza, M.R. Farias, C.M.F. Mafra, H. Soares, J.A.P. Passos, Á.S. Lima Coutinho, Acetonitrile as adjuvant to tune polyethylene glycol + K3PO4 aqueous two-phase systems and its effect on phenolic compounds partition, Sep. Purif. Technol. 223(2019) 41-48. [19] R.L. Souza, S.P.M. Ventura, C.M.F. Soares, J.A.P. Coutinho, Á.S. Lima, Lipase purification using ionic liquids as adjuvants in aqueous two-phase systems, Green Chem. 17(2015) 3026-3034. [20] C. Li, J. Han, Y. Wang, Y. Yan, J. Pan, X. Xu, Z. Zhang, Phase behavior for the aqueous two-phase systems containing the ionic liquid 1-Butyl-3-methylimidazolium tetrafluoroborate and kosmotropic salts, J. Chem. Eng. Data 55(2010) 1087-1092. [21] J. Han, R. Pan, X. Xie, Y. Wang, Y. Yan, G. Yin, W. Guan, Liquid-liquid equilibria of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate + sodium and ammonium citrate aqueous two-phase systems at (298.15, 308.15, and 323.15) K, J. Chem. Eng. Data 55(2010) 3749-3754. [22] J. Han, C. Yu, Y. Wang, X. Xie, Y. Yan, G. Yin, W. Guan, Liquid-liquid equilibria of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate and sodium citrate/tartrate/ acetate aqueous two-phase systems at 298.15 K: Experiment and correlation, Fluid Phase Equilib. 295(2010) 98-103. [23] Y. Wang, X. Xu, Y. Yan, J. Han, Z. Zhang, Phase behavior for the [Bmim]BF4 aqueous two-phase systems containing ammonium sulfate/sodium carbonate salts at different temperatures: experimental and correlation, Thermochim. Acta 501(2010) 112-118. [24] M. Petkovic, K.R. Seddon, L.P.N. Rebelo, C. Silva Pereira, Ionic liquids: a pathway to environmental acceptability, Chem. Soc. Rev. 40(2011) 1383-1403. [25] K.M. Docherty, J.K. Dixon, C.F. Kulpa Jr., Biodegradability of imidazolium and pyridinium ionic liquids by an activated sludge microbial community, Biodegradation. 18(2007) 481-493. [26] X. Zhu, H. Zhang, Optimization of [CnPy]Cl (n = 2,4,6) ionic liquid aqueous twophase system extraction of papain using response surface methodology with boxbehnken design, Process Biochem. 77(2019) 113-121. [27] Y. Li, R. Huang, Z. He, N. Li, X. Lu, Phase behavior of an aqueous two-phase ionic liquid containing (N-butylpyridiniumtetrafluoroborate+sulfate salts+water) at different temperatures, J. Mol. Liq. 216(2016) 174-184. [28] Y. Zhao, J. Zhao, Y. Huang, Q. Zhou, X. Zhang, S. Zhang, Toxicity of ionic liquids: database and prediction via quantitative structure-activity relationship method, J. Hazard. Mater. 278(2014) 320-329. [29] M.G. Freire, C.M.S.S. Neves, I.M. Marrucho, J.A.P. Coutinho, A.M. Fernandes, Hydrolysis of tetrafluoroborate and hexafluorophosphate counter ions in Imidazoliumbased ionic liquids?, J. Phys. Chem. A 114(2010) 3744-3749. [30] T. Turnaoglu, S.G. Ritchie, M.B. Shiflett, Liquid-liquid equilibria in binary mixtures of dihydroxy alcohols and Imidazolium-based ionic liquids, J. Chem. Eng. Data 64(2019) 3179-3186. [31] M. Pirrung, Handbook of Synthetic Organic Chemistry, second ed. Academic Press, New York, 2017. [32] Y. Li, X. Shu, X. Zhang, W. Guan, Liquid-liquid equilibria of the aqueous two-phase systems composed of the N-Ethylpyridinium tetrafluoroborate ionic liquid and ammonium sulfate/anhydrous sodium carbonate/sodium dihydrogen phosphate and water at 298.15 K, J. Chem. Eng. Data 59(2014) 176-182. [33] J. Guo, S. Xu, Y. Qin, Y. Li, X. Lin, C. He, S. Dai, The temperature influence on the phase behavior of ionic liquid based aqueous two-phase systems and its extraction efficiency of 2-chlorophenol, Fluid Phase Equilib. 506(2020) 112394. [34] J.C. Merchuk, B.A. Andrews, J.A. Asenjo, Aqueous two-phase systems for protein separation. Studies on phase inversion, J. Chromatogr. B Biomed. Sci. Appl. 711(1998) 285-293. [35] W. Zhang, G. Zhang, J. Han, Y. Yan, B. Chen, C. Sheng, Y. Liu, Phase equilibrium and chloramphenicol partitioning in aqueous two-phase system composed of 1-hydroxylhexyl-3-methylimidazolium chloride-salt, J. Mol. Liq. 193(2014) 226-231. [36] M.R. Almeida, H. Passos, M.M. Pereira, Á.S. Lima, J.A.P. Coutinho, M.G. Freire, Ionic liquids as additives to enhance the extraction of antioxidants in aqueous twophase systems, Sep. Purif. Technol. 128(2014) 1-10. [37] J. Han, Y. Wang, C. Chen, W. Kang, Y. Liu, K. Xu, L. Ni, (Liquid+liquid) equilibria and extraction capacity of (imidazolium ionic liquids+potassium tartrate) aqueous two-phase systems, J. Mol. Liq. 193(2014) 23-28. [38] M.G. Freire, A.F. Claudio, J.M. Araujo, J.A. Coutinho, I.M. Marrucho, L.J. Canongia, L.P. Rebelo, Aqueous biphasic systems: a boost brought about by using ionic liquids, Chem. Soc. Rev. 41(2012) 4966-4995. [39] Y. Wang, J. Han, J. Liu, Y. Hu, C. Sheng, Y. Wu, Liquid-liquid equilibrium phase behavior of iminazolium-based ionic liquid aqueous two-phase systems composed of 1-alkyl-3-methyl imidazolium tetrafluoroborate and different electrolytes ZnSO4, MgSO4 and Li2SO4 at 298.15 K: Experimental and correlation, Thermochim. Acta 557(2013) 68-76. [40] D. Othmer, P. Tobias, Liquid-liquid extraction data-the line correlation, Ind. Eng. Chem. 34(1942) 690-692. [41] W.D. Bancroft, S.S. Hubard, A new method for determining dineric distribution, J. Am. Chem. Soc. 64(1942) 347-353. [42] A. Hamta, M.R. Dehghani, M. Gholami, Novel experimental data on aqueous twophase system containing PEG-6000 and Na2CO3 at T = (293.15, 303.15 and 313.15) K, J. Mol. Liq. 241(2017) 144-149. [43] E. Gómez, P.F. Requejo, E. Tojo, E.A. Macedo, Recovery of flavonoids using novel biodegradable choline amino acids ionic liquids based ATPS, Fluid Phase Equilib. 493(2019) 1-9. [44] L. Liu, Y. Liu, L. Du, Y. Zhao, H. Du, (Liquid+liquid) phase equilibrium of aqueous two-phase system containing (surfactant+sodium sulfate+water) at different temperatures, Fluid Phase Equilib. 415(2016) 25-33. [45] E.C. de Souza, R.S. Diniz, J.S. Dos Reis Coimbra, M. de Oliveira Leite, G. Rocha Dos Santos, A.M. Da Cruz Rodrigues, L.H. Meller Da Silva, Measurements and modeling of lquid-liquid equilibrium of polyethylene glycol 400, sodium phosphate, or sodium citrate aqueous two-phase systems at (298.2, 308.2, and 318.2) K, J. Chem. Eng. Data 58(2013) 2008-2017. [46] M.J. Hey, D.P. Jackson, H. Yan, The salting-out effect and phase separation in aqueous solutions of electrolytes and poly(ethylene glycol), Polymer 46(2005) 2567-2572. [47] R.D. Rogers, A.H. Bond, C.B. Bauer, J. Zhang, S.T. Griffin, Metal ion separations in polyethylene glycol-based aqueous biphasic systems: Correlation of partitioning behavior with available thermodynamic hydration data, J. Chromatogr. B Biomed. Sci. Appl. 680(1996) 221-229. [48] M.T. Zafarani-Moattar, S. Hamzehzadeh, Liquid-liquid equilibria of aqueous twophase systems containing polyethylene glycol and sodium succinate or sodium formate, Calphad 29(2005) 1-6. [49] Y. Marcus, Thermodynamics of solvation of ions part 5. Gibbs free energy of hydration at 298.15 K, J. Chem. Soc. Faraday Trans. 87(1991) 2995-2999. [50] L. Wang, H. Zhu, Y. Sun, Y. Xu, Q. Wang, Y. Yan, Determination of trace chlorophenols endocrine disrupting chemicals in water sample using [Bmim]BF4-NaH2PO4 aqueous two-phase extraction system coupled with high performance liquid chromatography, Chin. J. Anal. Chem. 39(2011) 709-712. [51] O.G. Sas, I. Domínguez, Á. Domínguez, B. González, Using bis (trifluoromethylsulfonyl) imide based ionic liquids to extract phenolic compounds, J. Chem. Thermodyn. 131(2019) 159-167. [52] Q. Zhu, Y. Sun, S. Xu, Y. Li, X. Lin, Y. Qin, Rational design of 3D/2D In2O3 nanocube/ ZnIn2S4 nanosheet heterojunction photocatalyst with large-area “high-speed channels” for photocatalytic oxidation of 2,4-dichlorophenol under visible light, J. Hazard. Mater. 382(2020) 121098. |