[1] C.A.J. Silvestri, The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts, J. Catal. 47(2) (1977) 249-259. [2] P. Tian, Y. Wei, M. Ye, Z. Liu, Methanol to Olefins (MTO):From fundamentals to commercialization, ACS Catal. 5(2015) 1922-1938. [3] A.N.R. Bos, P.J.J. Tromp, H.N. Akse, Conversion of Methanol to lower olefins. Kinetic modeling, reactor simulation, and selection, Ind. Eng. Chem. Res. 34(1995) 134-135. [4] J.F. Haw, D.M. Marcus, Well-defined (supra)molecular structures in zeolite methanol-to-olefin catalysis, Top. Catal. 34(2005) 41-48. [5] T.Y. Park, G.F. Froment, Kinetic modeling of the methanol to olefins process. 1. Model formulation, Ind. Eng. Chem. Res. 40(2001) 4172-4186. [6] S. Wilson, P. Barger, The characteristics of SAPO-34 which influence the conversion of methanol to light olefins, Microporous Mesoporous Mater. 29(1999) 117-126. [7] D. Chen, K. Moljord, T. Fuglerud, A. Holmen, The effect of crystal size of SAPO-34 on the selectivity and deactivation of the MTO reaction, Microporous Mesoporous Mater. 29(1999) 191-203. [8] S. Svelle, F. Joensen, J. Nerlov, U. Olsbye, K.P. Lillerud, S. Kolboe, M. Bjorgen, Conversion of methanol into hydrocarbons over zeolite H-ZSM-5:Ethene formation is mechanistically separated from the formation of higher alkenes, J. Am. Chem. Soc. 128(2006) 14770. [9] C.D. Chang, Methanol conversion to light olefins, Catal. Rev. 26(1984) 323-345. [10] J. Li, Y. Wei, G. Liu, Y. Qi, P. Tian, B. Li, Y. He, Z. Liu, Comparative study of MTO conversion over SAPO-34, H-ZSM-5 and H-ZSM-22:Correlating catalytic performance and reaction mechanism to zeolite topology, Catal. Today 171(2011) 221-228. [11] J. Tan, Z. Liu, X. Bao, X. Liu, X. Han, C. He, R. Zhai, Crystallization and Si incorporation mechanisms of SAPO-34, Microporous Mesoporous Mater. 53(2002) 97-108. [12] G. Yang, Y. Wei, S. Xu, J. Chen, J. Li, Z. Liu, J. Yu, R. Xu, Nanosize-enhanced lifetime of SAPO-34 catalysts in methanol-to-olefin reactions, J. Phys. Chem. C 117(2013) 8214-8222. [13] B. Lu, H. Luo, H. Li, W. Wang, M. Ye, Z. Liu, J. Li, Speeding up CFD simulation of fluidized bed reactor for MTO by coupling CRE model, Chem. Eng. Sci. 143(2016) 341-350. [14] L.T. Zhu, M. Ye, Z.H. Luo, Application of filtered model for reacting gas-solid flows and optimization in a large-scale methanol-to-olefin fluidized bed reactor, Ind. Eng. Chem. Res. 55(2016) 11887-11899. [15] L.T. Biegler, Advanced optimization strategies for integrated dynamic process operations, Comput. Chem. Eng. 114(2017) 3-13. [16] M.E. Tipping, Sparse Bayesian learning and the relevance vector machine, J. Mach. Learn. Res. 1(2001) 211-244. [17] M. Christopher, Bishop, Pattern Recognition and Machine learning, Springer, New York, 2006. [18] C.M. Bishop, M.E. Tipping, Variational relevance vector machines, In:Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, San Francisco, CA (2000). [19] Y. Lecun, Y. Bengio, G. Hinton, Deep learning, Nature 521(2015) 436. [20] X. Zhou, X. He, B. Chen, Method for solving computer-aided product design optimization problem based on back propagation neural network, Chinese. J. Chem. Eng. 12(2004) 510-514. [21] L.T. Zhu, J.X. Tang, Z.H. Luo, Machine learning to assist filtered two-fluid model development for dense gas-particle flows, AIChE J. 66(2020) 16973. [22] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20(1995) 273-297. [23] E. Shoesmith, V. Vapnik, S. Kotz, Estimation of dependences based on empirical data, Stat. 33(3) (1984) 324. [24] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm:NSGA-II, IEEE. T. Evolut. Comput 6(2002) 182-197. [25] X. Gao, B. Chen, X. He, T. Qiu, J. Li, C. Wang, L. Zhang, Multi-objective optimization for the periodic operation of the naphtha pyrolysis process using a new parallel hybrid algorithm combining NSGA-II with SQP, Comput. Chem. Eng. 32(2008) 2801-2811. [26] Y. Tian, R. Cheng, X.Y. Zhang, Y.C. Jin, PlatEMO:a MATLAB platform for evolutionary multi-objective optimization, IEEE Comput. Intell. M. 12(2017) 73-87. [27] O. James Berges,[Springer Series in Statistics] Statistical Decision Theory and Bayesian Analysis||Bayesian Analysis, Springer, New York (1985). [28] O. Chapelle, V. Vapnik, O. Bousquet, S. Mukherjee, Choosing multiple parameters for support vector machines, Mach. Learn. 46(2002) 131-159. [29] Chih-Chung Chang, Chih-Jen Lin, LIBSVM:a library for support vector machines, ACM T. Intel. Syst. Tec. 2(3) (2011) 1-39. [30] V. Cherkassky, Y. Ma, Practical selection of SVM parameters and noise estimation for SVM regression, Neural Networks 17(2004) 113-126. [31] E. Zitzler, K. Deb, L. Thiele, Comparison of multiobjective evolutionary algorithms:Empirical results, Evol. Comput. 8(2000) 173-195. [32] A. Konak, D.W. Coit, A.E. Smith, Multi-objective optimization using genetic algorithms:A tutorial, Reliab. Eng. Syst. Safe 91(2006) 992-1007. [33] V. Vapnik, V. Vapnik, V.N. Vapnik, Statistical learning theory, Ann. I. Stat. Math. 55(2003) 371-389. [34] G.E. Dahl, T.N. Sainath, G.E. Hinton, Improving deep neural networks for LVCSR using rectified linear units and dropout, IEEE, Vancouver, BC, Canada (2013) 8609-8613. [35] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization, J. Mach. Learn. Res. 13(2012) 281-305. [36] P.E. Gill, M.M.A. Saunders, SNOPT:an SQP algorithm for large-scale constrained optimization, Siam. Rev. 47(2005) 99-131. [37] A. Wachter, L.T. Biegler, On the implementation of an interior-point filter linesearch algorithm for large-scale nonlinear programming, Math. Program. 106(2006) 25-57. [38] J. Holland, Adaptation in Natural And Artificial Systems, University of Michigan Press, Ann Arb, Mich, USA (1975). [39] D.A. De Jong, An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Doctoral dissertation (1975). [40] D.E. Goldberg, Genetic algorithms in search, optimization, and machine learning, Choice Rev. Online 27(2) (1989) 27-0936. [41] A. Lipowski, D. Lipowska, Roulette-wheel selection via stochastic acceptance, Physica A:Stat. Mech. Appl. 391(6) (2012) 2193-2196. [42] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing, Science 220(4598) (1983) 671-680. [43] D.S. Johnson, C.R. Aragon, L.A. Mcgeoch, C. Schevon, Optimization by simulated annealing:an experimental evaluation; Part I. Graph Partitioning, Oper. Res. 37(1989) 865-892. [44] J. Kennedy, R. Eberhart, Particle Swarm Optimization, in:Icnn95-international Conference on Neural Networks, Australia (1995). |