[1] National Bureau of Statistics of China, Statistical Bulletin of National Economic and Social Development of the people's Republic of China in 2019,[2020-2-28], http://www.stats.gov.cn/. [2] L.J. Qiu, China energy big data report (2020)-Coal,[2020-5-21], http://news.bjx.com.cn/special/. [3] J. Gao, G. Li, The performance of China's natural gas industry is outstanding in 2019, Energy Res. Util. 193(3) (2020) 51-54. (in Chinese) [4] Z. Qi, China energy big data report (2020)-Energy Comprehensive, Energy. Inf. Res.[2020-5-21], http://guangfu.bjx.com.cn/news/20200521/1074237.shtml. (in Chinese) [5] J.S. Qu, J.B. Zhang, Z.G. Sun, C.N. Yang, D. Shi, S.P. Peng, H.Q. Li, Research progress on comprehensive utilization of coal gasification slag, Clean Coal Technol. 26(1) (2020) 184-193. (in Chinese) [6] K. Cui, Safety Engineering Dictionary, Chemical Industry Press, Beijing, 1995,. (in Chinese) [7] B.L. Wang, Chemistry and technology progress of coal gasification, Clean Coal Technol. 20(3) (2014) 69-74. (in Chinese) [8] W. Fan, Comparison of coal water slurry and coal dust feeding methods of entrained flow gasification technology, Clean Coal Technol. 19(3) (2013) 65-67. (in Chinese) [9] X. Liu, Y.Y. Tian, Y.Y. Qiao, Progress of entrained-bed coal gasificaton technology, Chem. Ind. Eng. Prog. 29(S2) (2010) 120-124. (in Chinese) [10] K.P. Xia, H.P. Chen, X.H. Wang, S.H. Zhang, B. Gao, D.C. Liu, Present situation and development of entrained-bed coal gasification technology, Coal Convers. 28(4) (2005) 73-77. (in Chinese) [11] J.C. Zhang, Study on robust optimization and control of the performance of entrained flow coal gasification, Ph. D. Thesis, Cent. South Univ. Changsha, 2011. (in Chinese) [12] W. Yan, Application status and development ideas of coal gasification technology in China Coal Energy Group Co., Ltd, Coal Process. Compr. Util. 5(2019) 8, 42-45. (in Chinese) [13] W.J. Song, L.H. Tang, Z.B. Zhu, Y. Ninomiya, Rheological evolution and crystallization response of molten coal ash slag at high temperatures, AIChE J. 59(8) (2013) 2726-2742. [14] B.J.P. Buhre, G.J. Browning, R.P. Gupta, T.F. Wall, Measurement of the viscosity of coal-derived slag using thermomechanical analysis, Energy Fuels 19(3) (2005) 1078-1083. [15] V. Krishnamoorthy, S. Pisupati, A critical review of mineral matter related issues during gasification of coal in fixed, fluidized, and entrained flow gasifiers, Energies 8(9) (2015) 10430-10463. [16] F.J. Meng, Petrochemical coal two associations to guide the industry to resume work and production docking, http://www.cinic.org.cn/hy/zh/786450.html,2020.4. (in Chinese) [17] Y.B. Zhao, H. Wu, X.L. Cai, J.D. Zhuo, S.Y. Lai, H.G. Liu, Y.H. Jing, W. Yuan, Basic characteristics of coal gasification residual, Clean Coal Technol. 21(3) (2015) 74, 110-113. (in Chinese) [18] X.F. Shang, J.L. Ma, J. Zhang, D.Y. Xu, L.Y. Zhang, J.Q. Zhou, X.Y. Duan, X.M. Zhang, Research status and prospects of utilization technologies of slag from coal gasification, J. Environ. Eng. Technol. 7(6) (2017) 712-717. (in Chinese) [19] G.J. Li, Brief introduction of component analysis and comprehensive utilization of coal chemical gasification filter cake, Sci. Technol. Inf. (35) (2012) 398, 466. (in Chinese) [20] Z.F. Mao, Z.X. Li, Z. Liu, Discussion on the problem of slag-water separation in GE coal-water slurry gasification unit, Iterogenous fertilizer progress 4(2015) 31-33. (in Chinese) [21] Y. Wu, S.Y. Zhao, B. Li, Study on the residue features of Ningdong coal in entrained flow gasifiers, Coal Eng. 49(3) (2017) 115-118. (in Chinese) [22] S. Yang, L.J. Shi, Discussion on component analysis and comprehensive utilization of coal gasification slag, Coal Chem. Ind. 41(4) (2013) 29-31, 38. (in Chinese) [23] H. Shuai, H.F. Yin, H.D. Yuan, J.X. Chen, Phase composition evolution and viscosity-temperature characteristics of gasification slags at high temperature, Coal Convers. 38(3) (2015) 44-48. (in Chinese) [24] X.X. Gao, X.L. Guo, X. Gong, Characterization of slag from entrained-flow coal gasificaion, J. East China Univ. Sci. Technol. (Nat. Sci. Ed.) 35(5) (2009) 677-683. (in Chinese) [25] G.Z. Chi, Q.H. Guo, Y. Gong, T. Zhang, Q.F. Liang, G.S. Yu, Ash formation mechanisms during gasification in coal-water slurry gasifier, CIESC J. 63(2) (2012) 584-592. (in Chinese) [26] J. Gu, D.F. Li, Z.Z. Chen, S.Y. Wu, Y.Q. Wu, J.S. Gao, Study on physical and chemical properties of fly ash from entrained-flow gasifier, Guangdong Chem. Ind. 39(1) (2012) 119-120,129. (in Chinese) [27] Y.M. Ping, S. Huang, S.Y. Wu, Y.Q. Wu, J.S. Gao, Physicochemical properties of coal gasification slag and its catalytic effect on gasification reactivity of petroleum coke, J. East China Univ. Sci. Technol. (Nat. Sci. Ed.) 38(1) (2012) 12-16,52. (in Chinese) [28] X.D. Ge, Surface properties analysis of coal gasification coal cinder and flotation extraction research, China Coal 45(1) (2019) 107-112. (in Chinese) [29] F.H. Guo, H. Liu, Y. Guo, Y.X. Zhang, J. Li, X. Zhao, J.J. Wu, Occurrence modes of water in gasification fine slag filter cake and drying behavior analysis-A case study, J. Environ. Chem. Eng. 9(1) (2021) 104585. [30] B.F. Wen, W.C. Xia, J.M. Sokolovic, Recent advances in effective collectors for enhancing the flotation of low rank/oxidized coals, Powder Technol. 319(2017) 1-11. [31] C.C. Pan, X. Liu, W. Huo, X.L. Guo, X. Gong, Functional groups and pyrolysis characteristics of fine gasification ashes and raw coals, CIESC J. 66(4) (2015) 1449-1458. (in Chinese) [32] H.X. Li, M. Liu, J.Z. Li, T.K. Dai, A study on Huainan coal gasification cinder characteristics, Coal Geol. China 27(7) (2015) 68-70. (in Chinese) [33] P. Asokan, M. Saxena, S.R. Asolekar, Coal combustion residues-Environmental implications and recycling potentials, Resour. Conserv. Recycl. 43(3) (2005) 239-262. [34] S.Y. Wu, S. Huang, L.Y. Ji, Y.Q. Wu, J.S. Gao, Structure characteristics and gasification activity of residual carbon from entrained-flow coal gasification slag, Fuel 122(2014) 67-75. [35] S.Y. Wu, S. Huang, Y.Q. Wu, J.S. Gao, Characteristics and catalytic actions of inorganic constituents from entrained-flow coal gasification slag, J. Energy Inst. 88(1) (2015) 93-103. [36] S.Q. Xu, Gasification kinetics study of coal char and unburned carbon in slag, Ph. D. Thesis, East China Univ. Sci. Technol., Shanghai, 2011. (in Chinese) [37] M. Neville, R.J. Quann, B.S. Haynes, A.F. Sarofim, Vaporization and condensation of mineral matter during pulverized coal combustion, Symp. Int. Combust. 18(1) (1981) 1267-1274. [38] D.D. Taylor, R.C. Flagan, The influence of combustor operation on fine particles from coal combustion, Aerosol Sci. Technol. 1(1) (1981) 103-117. [39] X. Sheng, M.J. Ji, Q.Y. Han, H.X. Li, Study on the factors influencing fly ash deposition in shell coal gasification process, J. Anhui Univ. Sci. Technol. (Nat. Sci.) 29(2) (2009) 42-46. (in Chinese) [40] X. Zhao, Y.X. Zhang, Z.K. Miao, Z.K. Guo, L. Zhou, K.J. Liu, J.J. Wu, Precise separation and resource utilization of coal gasification fly ash, Clean Coal Technol. 25(1) (2019) 41-46. (in Chinese) [41] Z.H. Rao, Y.M. Zhao, C.L. Huang, C.L. Duan, J.F. He, Recent developments in drying and dewatering for low rank coals, Prog. Energy Combust. Sci. 46(2015) 1-11. [42] C.D. Si, J.J. Wu, Y. Wang, Y.X. Zhang, X.L. Shang, Drying of low-rank coals:A review of fluidized bed technologies, Dry. Technol. 33(3) (2015) 277-287. [43] C.D. Si, J.J. Wu, Y. Wang, Y.X. Zhang, G.J. Liu, Effect of acoustic field on minimum fluidization velocity and drying characteristics of lignite in a fluidized bed, Fuel Process, Technol. 135(2015) 112-118. [44] C. Si, Heat & mass transfer mechanism of microwave enhanced drying lignite in a fluidized bed, Ph. D. Thesis, China Univ. Min. Technol., Shanghai, 2016. (in Chinese) [45] Q. He, Lignite during drying process mechanism of moisture transport in the pores, Ph. D. Thesis, China Univ. Min. Technol., Beijing, 2016. (in Chinese) [46] H. Fujitsuka, R. Ashida, K. Miura, Upgrading and dewatering of low rank coals through solvent treatment at around 350℃ and low temperature oxygen reactivity of the treated coals, Fuel 114(2013) 16-20. [47] Y.X. Zhang, J.J. Wu, Y. Wang, Z.Y. Miao, C.D. Si, X.L. Shang, N. Zhang, Effect of hydrothermal dewatering on the physico-chemical structure and surface properties of Shengli lignite, Fuel 164(2016) 128-133. [48] C. Vogt, T. Wild, C. Bergins, K. Strauß, J. Hulston, A.L. Chaffee, Mechanical/thermal dewatering of lignite. Part 4:Physico-chemical properties and pore structure during an acid treatment within the MTE process, Fuel 93(2012) 433-442. [49] Y.X. Zhang, J.J. Wu, J. Ma, B.B. Wang, X.L. Shang, C.D. Si, Study on lignite dewatering by vibration mechanical thermal expression process, Fuel Process. Technol. 130(2015) 101-106. [50] G. Favas, W.R. Jackson, Hydrothermal dewatering of lower rank coals. 1. Effects of process conditions on the properties of dried product, Fuel 82(1) (2003) 53-57. [51] Q.J. Zhang, Z.Z. Cao, H.M. Li, Study on the application of plate and frame filter press in dewatering of gasified coal ash, Nitrogenous Fert. Syngas. 47(5) (2019) 13-16. (in Chinese). [52] L. Liu, X.X. Lv, C. Chen, X.D. Liu, W.Y. Guo, J.W. Chao, Analysis and optimization of dewatering for coal gasification ash water in decanter centrifuge, J. Changzhou Univ. (Nat. Sci. Ed.) 31(6) (2019) 52-59. (in Chinese) [53] X.C. Li, C. Yuan, Characteristic analysis of ash and slag in dry coal gasifier and dehydration optimization reform, Yunnan Chem. Technol. 46(5) (2019) 73-74. (in Chinese) [54] G.Z. Zhao, Design and implementation of coal gasification slag dehydration process, Chem. Eng. Des. Commun. 45(6) (2019) 12-13. (in Chinese) [55] X.L. Song, G. Guan, H. Li, T.H. Lin, G. Li, H.Q. Chen, J.Q. Zhu, B. Zhang, C.H. Yan, J. Lu, Device for dehydrating and recycling coal gasification coarse slag, CN Pat. 208574338(2019). (in Chinese) [56] GB/T 1596-2017, Fly ash used for cement and concrete, Standardization administration of the People's Republic of China, PRC National Standard 2017, http://www.sac.gov.cn/. (in Chinese) [57] JC/T 409-2016, Fly ash for silicate building products, Building materials industry standard of the people's Republic of China, PRC National Standard 2016, http://std.samr.gov.cn/. (in Chinese) [58] X.F. Shang, Y.Y. You, J.Q. Zhou, C. Zhang, L. Zhu, N. Huo, J.L. Ma. Analysis on the research status and application trend of gas slag utilization technology, in:Academic Conference of Chinese Society For Environmental Sciences'16, Haikou, China, 2016. (in Chinese) [59] R.S. Blissett, N.A. Rowson, A review of the multi-component utilisation of coal fly ash, Fuel 97(2012) 1-23. [60] M.M. Maroto-Valer, D.N. Taulbee, J.C. Hower, Characterization of differing forms of unburned carbon present in fly ash separated by density gradient centrifugation, Fuel 80(6) (2001) 795-800. [61] L. Zhang, F. Yang, Y.J. Tao, Removal of unburned carbon from fly ash using enhanced gravity separation and the comparison with froth flotation, Fuel 259(2020) 116282. [62] P. Zhao, G.Y. Gao, J.Y. Wang, Z.F. Li, M.X. Gao, J.F. Li, A device for comprehensive utilization of waste sludge from coal gasification in Texaco furnace, CN Pat. (2017), 206747245. (in Chinese) [63] S. Gao, A method for efficiently grading high-purity ash and high-purity carbon from coal gasification slag, CN Pat. (2018), 108160679. (in Chinese) [64] A.C. Chang, M.W. Thompson, R.Q. Honak, Method and system for processing gasification furnace slag products, CN Pat. (2016), 105331391. (in Chinese) [65] J.X. Lu, D.R. Su, J.P. Zhang, M.S. Peng, L.X. Deng, D.L. Zhang, Biomass gasification furnace slag screening and recycling device, CN Pat. (2014), 203940445. (in Chinese) [66] S.J. Zhu, X.L. Chen, Y.X. Qian, H.F. Lu, X. Gong, Separation performance of coal gasification fine ash by hydrocyclone, Proc. Chin. Soc. Elect. Eng. 38(13) (2018) 3873-3880, 4028. (in Chinese) [67] Y.X. Zhi, P. He, Process for purifying coal gasification slag and system for realizing the process, CN Pat. (2018), 107641537. (in Chinese) [68] S.V. Vassilev, R. Menendez, A.G. Borrego, M. Diaz-Somoano, M.R. MartinezTarazona, Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 3. Characterization of magnetic and char concentrates, Fuel 83(11-12) (2004) 1563-1583. [69] J. Groppo, R. Honaker, Economical recovery of fly ash-derived magnetics and evaluation for coal cleaning, Proceedings of the WOCA, Lexington, USA, 2009. [70] C.T. Yavuz, A. Prakash, J.T. Mayo, V.L. Colvin, Magnetic separations:From steel plants to biotechnology, Chem. Eng. Sci. 64(10) (2009) 2510-2521. [71] S.J. Xie, C. Zhang, W.F. Lei, W.B. Yang, S.J. Song, Study on magnetic separation of iron oxides from fly ash, Shandong Chem. Ind. 45(5) (2016) 1-2,4. (in Chinese) [72] X. Da, Selection and use of coal flotation reagents, Inn. Mong. Coal. Econ. 2(2003) 66-68. (in Chinese) [73] L. Bokányi, B. Csöke, Preparation of clean coal by flotation following ultra fine liberation, Appl. Energy 74(3-4) (2003) 349-358. [74] G. Ates ok, M.S. Çelik, A new flotation scheme for a difficult-to-float coal using pitch additive in dry grinding, Fuel 79(12) (2000) 1509-1513. [75] M.D. Xu, Y.W. Xing, X.H. Gui, Y.J. Cao, D.Y. Wang, L.W. Wang, Effect of ultrasonic pretreatment on oxidized coal flotation, Energy Fuels 31(12) (2017) 14367-14373. [76] D. Feng, C. Aldrich, Effect of preconditioning on the flotation of coal, Chem. Eng. Commun. 192(7) (2005) 972-983. [77] B.K. Sahoo, S. De, B.C. Meikap, Improvement of grinding characteristics of Indian coal by microwave pre-treatment, Fuel Process. Technol. 92(10) (2011) 1920-1928. [78] G. Özbayoǧlu, T. Depci, N. Ataman, Effect of microwave radiation on coal flotation, Energy Sources Part A:Recover. Util. Environ. Eff. 31(6) (2009) 492-499. [79] M.S. Celik, K. Seyhan, Effect of heat treatment on the flotation of Turkish lignites, Int. J. Coal Prep. Util. 16(1-2) (1995) 65-79. [80] M. Çınar, Floatability and desulfurization of a low-rank (Turkish) coal by lowtemperature heat treatment, Fuel Process. Technol. 90(10) (2009) 1300-1304. [81] W.D. Wang, D.H. Liu, Y.N. Tu, L.Z. Jin, H. Wang, Enrichment of residual carbon in entrained-flow gasification coal fine slag by ultrasonic flotation, Fuel 278(2020) 118195. [82] R. Zhang, F.Y. Guo, Y.C. Xia, J.L. Tan, Y.W. Xing, X.H. Gui, Recovering unburned carbon from gasification fly ash using saline water, Waste Manag. 98(2019) 29-36. [83] F.H. Guo, X. Zhao, Y. Guo, Y.X. Zhang, J.J. Wu, Fractal analysis and pore structure of gasification fine slag and its flotation residual carbon, Colloids Surfaces A:Physicochem. Eng. Aspects 585(2020) 124148. [84] Y. Wu, Study on the separation and utilization of gasified residues, M.A. Thesis, Xian Univ. Sci. Technol., Xi'an, 2017. (in Chinese) [85] S.Y. Zhao, Y. Wu, B. Li, X. Liang, Secondary recovery system for coal in Texaco gasification slag, CN Pat. 110052334(2020). (in Chinese) [86] H.M. Li, Z.Z. Cao, J.T. Wang, Y.X. Wan, J. Qiao, M.E. Zhang, X. Meng, Coal gasification fine ash carbon extraction device and carbon extraction process, CN Pat. (2019), 109749784. (in Chinese) [87] Y.X. Zhang, F.H. Guo, J.J. Wu, Flotation separation and dehydration system and method for coal gasification fine slag, CN Pat. (2020), 110052334. (in Chinese) [88] M. Xu, H.J. Zhang, C.Q. Liu, Y. Ru, G.S. Li, Y. Cao, A comparison of removal of unburned carbon from coal fly ash using a traditional flotation cell and a new flotation column, Physicochem. Probl. Miner. Process. 53(1) (2017) 628-643. [89] W. Yu, Z. Li, L.J. Liu, Test study on classified flotation of fine coal slime, Min. Process. Equip. 42(4) (2014) 92-96. (in Chinese) [90] K.Q. Liu, H.Y. Zhao, Z.Z. Li, Y. Guan, Z.Q. Tang, Q. Chen, Influence of coal gasification slag on cement concrete performance, J. Archit. Civil. Eng. 34(5) (2017) 194-195. (in Chinese) [91] M.Y. Hang, X.T. Lv, Y.M. Guo, S.G. Sun, Study on hydration mechanism of gasification slag fine powder cementitious system, China Concr. Cem. Prod. 2(2019) 94-97. (in Chinese) [92] A. Acosta, I. Iglesias, M. Aineto, M. Romero, J.M. Rincón, Utilisation of IGCC slag and clay steriles in soft mud bricks (by pressing) for use in building bricks manufacturing, Waste Manag. 22(8) (2002) 887-891. [93] L.P. Zhang, X.D. Wen, Y.T. Shi, A.L. Chen, H.B. Qu, C. Dhawal, Research on ma king non-burnt brickfrom indirect coal liquefaction residues, J. China Univ. Min. Technol. 44(2) (2015) 354-358. (in Chinese) [94] Z. Yu, P.C. Yu, H.F. Yin, Effect of gasification slag on the properties of sintered wall materials with iron ore tailings, Metal Mine 11(2010) 183-186. (in Chinese) [95] D.D. Zhu, S.D. Miao, B. Xue, Y.S. Jiang, C.D. Wei, Effect of coal gasification fine slag on the physicochemical properties of soil, Water Air Soil Pollut. 230(7) (2019) 1-11. [96] D.D. Zhu, B. Xue, Y.S. Jiang, C.D. Wei, Using chemical experiments and plant uptake to prove the feasibility and stability of coal gasification fine slag as silicon fertilizer, Environ. Sci. Pollut. Res. 26(6) (2019) 5925-5933. [97] T. Liu, S.K. Awasthi, Y.M. Duan, Z.Q. Zhang, M.K. Awasthi, Effect of fine coal gasification slag on improvement of bacterial diversity community during the pig manure composting, Bioresour. Technol. 304(2020) 123024. [98] J.Y. Hu, Study on the comprehensive utilization of a coal gasification slag in the north, M.A. Thesis, Southwest Univ. Sci. Technol., Mianyang, 2018. (in Chinese) [99] D.D. Zhu, Y. Cheng, B. Xue, Y.S. Jiang, C.D. Wei, Coal gasification fine slag as a low-cost adsorbent for adsorption and desorption of humic acid, Silicon 12(7) (2020) 1547-1556. [100] J. Du, G.F. Dai, S.S. Li, X.B. Wang, X.W. Sun, H.Z. Tan, Experimental study on the fundamental combustion characteristics of fine slag from gasification, Clean Coal Technol. 25(2) (2019) 83-88. (in Chinese) [101] Y.J. Chao, H.J. Wang, Feasibility study of circulating fluidized bed boiler blending burning gasification slag and coal slime, J. Chem. Fert. Ind. 42(3) (2015) 48-50. (in Chinese) [102] J.G. Gao, Y.L. Ma, R.J. Liu, Comprehensive utilization and benefit analysis of coal water slurry gasification ash, Energy Conserv. Environ. Protec. 2(2014) 72-73. (in Chinese) [103] Y.B. Dong, Recovery and recycling of carbon resource from fine dregs of water-coal slurry gasification, Nitrogenous Fert. Technol. 39(3) (2018) 25-26, 35. (in Chinese) [104] D.X. Liu, J.Y. Hu, Q.M. Feng, Y. Huang, Z.H. Xu, Study on flotation of coal gasification slag and preparation of activated carbon from refined carbon, Coal Convers. 41(5) (2018) 73-80. (in Chinese) [105] Y.Y. Yao, Preparation and performance of activated carbon/zeolite composite adsorptive materials from coal gasification, M.A. Thesis, Jilin Univ., Changchun, 2018. (in Chinese) [106] J.P. Zhang, J. Zuo, W.D. Ai, S. Liu, D.D. Zhu, J.Y. Zhang, C.D. Wei, Preparation of a new high-efficiency resin deodorant from coal gasification fine slag and its application in the removal of volatile organic compounds in polypropylene composites, J. Hazard. Mater. 384(2020) 121347. [107] S. Liu, X.T. Chen, W.D. Ai, C.D. Wei, A new method to prepare mesoporous silica from coal gasification fine slag and its application in methylene blue adsorption, J. Clean. Prod. 212(2019) 1062-1071. [108] J.Y. Hu, Y. Huang, W.Q. Wang, Q.M. Feng, Z.H. Xu, Applied of concentrate carbon from coal gasification slag by flotation on dyeing wastewater, Environ. Eng. 36(3) (2018) 59-63, 137. (in Chinese) [109] L.Y.Wen,Uselowtemperaturesinteringmethodofacticatedcoalgasificationfine slag and anovel synthesis of mesoporous SBA-15/ME-SBA-15 from gasification fine slag, M.A. Thesis, Inner Mongolia Univ., Hohhot, 2015. (in Chinese) [110] Y.Y. Gu, X.C. Qiao, A carbon silica composite prepared from water slurry coal gasification slag, Micropor. Mesopor. Mater. 276(2019) 303-307. [111] W.D. Ai, S. Liu, J.P. Zhang, S.D. Miao, C.D. Wei, Mechanical and nonisothermal crystallization properties of coal gasification fine slag glass bead-filled polypropylene composites, J. Appl. Polym. Sci. 136(30) (2019) 47803. [112] W.D. Ai, B. Xue, C.D. Wei, K.Z. Dou, S.D. Miao, Mechanical and thermal properties of coal gasification fine slag reinforced low density polyethylene composites, J. Appl. Polym. Sci. 135(17) (2018) 46203. [113] Y.Y. Gu, X.C. Qiao, Adsorption of Pb2+ from water by carbon-silica composite prepared from coal gasification fine slag, Environ. Prot. Chem. Ind. 39(1) (2019) 87-93. (in Chinese) |