[1] X. Zhao, H. Zhou, V. Sikarwar, M. Zhao, A. Park, P. Fennell, L. Shen, L. Fan, Biomass-based chemical looping technologies:The good, the bad and the future[J], Energy Environ. Sci. 10(9) (2017) 1885-1910. [2] S. Sansaniwal, M. Rosen, S. Tyagi, Global challenges in the sustainable development of biomass gasification:An overview, Renew. Sust. Energ. Rev. 80(2017) 23-43. [3] Y. Lin, H. Wang, Y. Wang, R. Huo, Z. Huang, M. Liu, G. Wei, Z. Zhao, H. Li, Y. Fang, Review of biomass chemical looping gasification in China, Energy Fuel 34(7) (2020) 7847-7862. [4] M. Luo, Y. Yi, C. Wang, K. Liu, J. Pan, Q. Wang, Energy and exergy analysis of power generation systems with chemical looping combustion of coal, Chem. Eng. Technol. 41(4) (2018) 776-787. [5] J. Adanez, A. Abad, F. Garcialabiano, P. Gayan, L. Diego, Progress in chemicallooping combustion and reforming technologies, Prog. Energ. Combust. 38(2) (2012) 215-282. [6] S. Huseyin, G. Wei, H. Li, F. He, Z. Huang, Chemical-looping gasification of biomass in a 10 kWth interconnected fluidized bed reactor using Fe2O3/Al2O3 oxygen carrier, J. Fuel Chem. Technol. 42(8) (2014) 922-931. [7] Z. Huang, F. He, H. Zhu, D. Chen, K. Zhao, G. Wei, Y. Feng, A. Zheng, Z. Zhao, H. Li, Thermodynamic analysis and thermogravimetric investigation on chemical looping gasification of biomass char under different atmospheres with Fe2O3 oxygen carrier, Appl. Energy 157(2015) 546-553. [8] H. Ge, W. Guo, L. Shen, T. Song, J. Xiao, Biomass gasification using chemical looping in a 25 kWth reactor with natural hematite as oxygen carrier, Chem. Eng. J. 286(2016) 174-183. [9] Z. Huang, F. He, Y. Feng, R. Liu, K. Zhao, A. Zheng, S. Chang, Z. Zhao, H. Li, Characteristics of biomass gasification using chemical looping with iron ore as an oxygen carrier, Int. J. Hydrogen Energy 38(34) (2013) 14568-14575. [10] Y. Lin, H. Wang, Z. Huang, M. Liu, G. Wei, Z. Zhao, H. Li, Y. Fang, Chemical looping gasification coupled with steam reforming of biomass using NiFe2O4:Kinetic analysis of DAEM-TI, thermodynamic simulation of OC redox, and a loop test, Chem. Eng. J. 395(2020) 125046. [11] D. Wang, Y. Liu, B. Wang, Q. Guo, Chemical looping gasification of kitchen waste for syngas production, J. Chem. Eng. Chin. Univ. 32(1) (2018) 229-236. [12] J. Yan, R. Sun, L. Shen, H. Bai, S. Jiang, Y. Xiao, T. Song, Hydrogen-rich syngas production with tar elimination via biomass chemical looping gasification (BCLG) using BaFe2O4/Al2O3 as oxygen carrier, Chem. Eng. J. 387(2020) 12407. [13] Q. Hu, Y. Shen, J. Chew, T. Ge, C. Wang, Chemical looping gasification of biomass with Fe2O3/CaO as the oxygen carrier for hydrogen-enriched syngas production, Chem. Eng. J. 379(2020) 122346. [14] C. Xu, Z. Du, S. Yang, H. Ma, J. Feng, Effects of inherent potassium on the catalytic performance of Ni/biochar for steam reforming of toluene as a tar model compound, Chinese J. Chem. Eng. (2020) (in press). [15] L. Felice, C. Courson, P. Foscolo, A. Kiennemann, Iron and nickel doped alkalineearth catalysts for biomass gasification with simultaneous tar reformation and CO2 capture, Int. J. Hydrogen Energy 36(9) (2011) 5296-5310. [16] S. Rapagná, H. Provendier, C. Petit, A. Kiennemann, P. Foscolo, Development of catalysts suitable for hydrogen or syn-gas production from biomass gasification, Biomass Bioenergy 22(5) (2002) 377-388. [17] Z. Huang, F. He, Y. Feng, K. Zhao, A. Zheng, S. Chang, G. Wei, Z. Zhao, H. Li, Biomass char direct chemical looping gasification using NiO-modified iron ore as an oxygen carrier, Energy Fuel 28(1) (2014) 183-191. [18] D. Chen, L. Shen, J. Xiao, T. Song, H. Gu, S. Zhang, Experimental investigation of hematite oxygen carrier decorated with NiO for chemical looping combustion of coal, J. Fuel Chem. Technol. 40(3) (2012) 267-272. [19] P. Gayan, C. Dueso, A. Abad, J. Adanez, L. Diego, F. Garcialabiano, NiO/Al2O3 oxygen carriers for chemical-looping combustion prepared by impregnation and deposition-precipitation methods, Fuel 88(6) (2009) 1016-1023. [20] J. Zhu, H. Li, L. Zhong, P. Xiao, X. Xu, X. Yang, Z. Zhao, J. Li, Perovskite oxides:Preparation, characterizations, and applications in heterogeneous catalysis, ACS Catal. 4(9) (2014) 2917-2940. [21] X. Zhu, K. Li, L.M. Neal, F. Li, Perovskites as geo-inspired oxygen storage materials for chemical looping and three-way catalysis:A perspective, ACS Catal. 8(9) (2018) 8213-8236. [22] B.J. Hare, D. Maiti, S. Ramani, A. Ramos, V. Bhethanabotla, J. Kuhn, Thermochemical conversion of carbon dioxide by reverse water-gas shift chemical looping using supported perovskite oxides, Catal. Today 323(2019) 225-232. [23] T. Li, R. Jayathilake, D. Taylor, E. Rodriguez, Structural studies of the perovskite series La1-xSrxCoO3-δ during chemical looping with methane, Chem. Commun. 55(34) (2019) 4929-4932. [24] C. Matsouka, V.T. Zaspalis, L. Nalbandian, Perovskites as oxygen carriers in chemical looping reforming process-preparation of dense perovskite membranes and ionic conductivity measurement, Mater. Today:Proceedings 5(14) (2018) 27543-27552. [25] H. Falcón, A.E. Goeta, G. Punte, R. Carbonio, Crystal structure refinement and stability of LaFexNi1-xO3 solid solutions, J. Solid State Chem. 133(2) (1997) 379-385. [26] R. Sun, J. Yan, L. Shen, H. Bai, Performance and mechanism study of LaFeO3 for biomass chemical looping gasification, J. Mater. Sci. 55(25) (2020) 11151-11166. [27] P. Courty, H. Ajot, C. Marcilly, B. Delmon, Oxydes Mixtes ou en Solution Solide sous Forme Très Divisée Obtenus par Décompostion Thermique de Précurseurs Amorphes, Powder Technol. 7(1) (1973) 21-38. [28] Z. Yue, W. Guo, J. Zhou, Z. Gui, L. Li, Synthesis of nanocrystilline ferrites by solgel combustion process:the influence of pH value of solution, J. Magn. Magn. Mater. 270(1-2) (2004) 216-223. [29] O. Komova, V. Simagina, S. Mukha, O. Netskina, G. Odegova, O. Bulavchenko, A. Ishchenko, A. Pochtar, A modified glycine-nitrate combustion method for onestep synthesis of LaFeO3, Adv. Powder Technol. 27(2) (2016) 496-503. [30] A. Sutka, G. Mezinskis, Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials, Front. Mater. Sci. 6(2) (2012) 128-141. [31] J. Yan, H. Ge, S. Jiang, H. Gu, T. Song, Q. Guo, L. Shen, Effect of sodium removal on chemical looping combustion of high-sodium coal with hematite as an oxygen carrier, Energy Fuel 33(3) (2019) 2153-2165. [32] R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystall. A 32(1976) 751. [33] V. Goldschmidt, Die Gesetze der Krystallochemie, Naturwissenschaften 14(21) (1926) 477-485. [34] P. Odier, Y. Nigara, J. Coutures, M. Sayer, Phase relations in the LaNiO system:Influence of temperature and stoichiometry on the structure of La2NiO4, J. Solid State Chem. 56(1) (1985) 32-40. [35] V. Elakkiya, R. Abhishekram, R. Sumathi, Copper doped nickel aluminate:synthesis, characterisation, optical and colour properties, Chinese J. Chem. Eng. 27(10) (2019) 2596-2605. [36] F. Hou, Y. Qin, T. Xu, M. Xu, Study on oxygen-sensing properties of LaNiO3 Thin films, J. Electroceram. 224-226(2002) 189-192. [37] C. Liu, S. Li, D. Chen, Y. Xiao, T. Li, W. Wang, Hydrogen-rich syngas production by chemical looping steam reforming of acetic acid as bio-oil model compound over Fe-doped LaNiO3 oxygen carriers, Int. J. Hydrogen Energy 44(33) (2019) 17732-17741. [38] D. Li, M. Koike, L. Wang, Y. Nakagawa, Y. Xu, K. Tomishige, Regenerability of hydrotalcite-derived nickel-iron alloy nanoparticles for syngas production from biomass tar, ChemSusChem 7(2) (2014) 510-522. [39] H. Ding, Y. Xu, C. Luo, Y. Zheng, Q. Shen, Z. Liu, L. Zhang, Synthesis and characteristics of BaSrCoFe-based perovskite as a functional material for chemical looping gasification of coal, Int. J. Hydrogen Energy 41(48) (2016) 22846-22855. [40] D. Fino, N. Russo, G. Saracco, V. Speechia, The role of suprafacial oxygen in some perovskites for the catalytic combustion of soot, J. Catal. 217(2) (2003) 367-375. [41] J. Chen, K. Zhao, Z. Zhao, Z. Zhao, F. He, Z. Huang, G. Wei, C. Xia, Reaction schemes of barium ferrite in biomass chemical looping gasification for hydrogen-enriched syngas generation via an outer-inner looping redox reaction mechanism, Energy Convers. Manage. 189(2019) 81-90. [42] D. Lane, P. Van Eyk, P. Ashman, C. Kwong, R. De Nys, D. Roberts, A. Cole, D. Lewis, Release of Cl, S, P, K, and Na during thermal conversion of algal biomass, Energy Fuel 29(4) (2015) 2542-2554. [43] H. Wu, M. Castro, P. Jensen, F. Frandsen, P. Glarborg, K. Dam-Johansen, M. Rokke, K. Lundtorp, Release and transformation of inorganic elements in combustion of a high-phosphorus fuel, Energy Fuel 25(7) (2011) 2874-2886. [44] H. Park, E. Kreidler, Phase equilibria in the system La2O3-P2O5, J. Am. Ceram. Soc. 67(1) (2010) 23-26. [45] K. Ramesh, J. Zheng, E. Ling, Y. Han, A. Borgna, Synthesis, characterization, and catalytic activity of uniformly crystalline LaPO4 nanofiber catalysts for ethanol dehydration, J. Phys. Chem. C 113(37) (2009) 16530-16537. [46] X. Niu, L. Shen, Release and transformation of phosphorus in chemical looping combustion of sewage sludge, Chem. Eng. J. 335(2017) 621-630. |