[1] E. Takahashi, C.A. Wraight, Proton and electron-transfer in the acceptor quinone complex of rhodobacter-sphaeroides reaction centers-Characterization of site-directed mutants of the 2 ionizable residues, Glul212 and Aspl213, in the Qb binding-site, Biochemistry 31(3) (1992) 855-866. [2] P. Maróti, C.A. Wraight, Flash-induced H+ binding by bacterial photosynthetic reaction centers-Influences of the redox states of the acceptor quinones and primary donor, Biochim. Biophys. Acta 934(3) (1988) 329-347. [3] H. Alt, H. Binder, A. Koehling, G. Sardstede, Quinones as rechargeable and regenerable battery cathode materials, J. Electrochem. Soc. 118(12) (1971) 1950. [4] M. Miroshnikov, K.P. Divya, G. Babu, A. Meiyazhagan, L.M. Reddy Arava, P.M. Ajayan, G. John, Power from nature:Designing green battery materials from electroactive quinone derivatives and organic polymers, J. Mater. Chem. A 4(32) (2016) 12370-12386. [5] C. Han, H. Li, R. Shi, T. Zhang, J. Tong, J. Li, B. Li, Organic quinones towards advanced electrochemical energy storage:Recent advances and challenges, J. Mater. Chem. A 7(41) (2019) 23378-23415. [6] D.G. Kwabi, K. Lin, Y. Ji, E.F. Kerr, M.-A. Goulet, D. De Porcellinis, D.P. Tabor, D.A. Pollack, A. Aspuru-Guzik, R.G. Gordon, M.J. Aziz, Alkaline quinone flow battery with long lifetime at pH 12, Joule 2(9) (2018) 1907-1908. [7] K. Lin, Q. Chen, M.R. Gerhardt, L. Tong, S.B. Kim, L. Eisenach, A.W. Valle, D. Hardee, R.G. Gordon, M.J. Aziz, M.P. Marshak, Alkaline quinone flow battery, Science 349(6255) (2015) 1529-1532. [8] B. Huskinson, M.P. Marshak, C. Suh, S. Er, M.R. Gerhardt, C.J. Galvin, X. Chen, A. Aspuru-Guzik, R.G. Gordon, M.J. Aziz, A metal-free organic-inorganic aqueous flow battery, Nature 505(7482) (2014) 195-198. [9] K.C. Kim et al., Unveiled correlations between electron affinity and solvation in the redox potential of quinone-based sodium-ion batteries, Energy Storage Mater. 19(2019) 242-250. [10] S. Er, C. Suh, M.P. Marshak, A. Aspuru-Guzik, Computational design of molecules for an all-quinone redox flow battery, Chem. Sci. 6(2) (2015) 885-893. [11] G.C. Sedenho, D. De Porcellinis, Y. Jing, E. Kerr, L.M. Mejia-Mendoza, Á. Vazquez-Mayagoitia, A. Aspuru-Guzik, R.G. Gordon, F.N. Crespilho, M.J. Aziz, Effect of molecular structure of quinones and carbon electrode surfaces on the interfacial electron transfer process, ACS Appl. Energy Mater. 3(2) (2020) 1933-1943. [12] D.K. Newman, R. Kolter, A role for excreted quinones in extracellular electron transfer, Nature 405(6782) (2000) 94-97. [13] K.C. Kim, T. Liu, S.W. Lee, S.S. Jang, First-principles density functional theory modeling of Li binding:Thermodynamics and redox properties of quinone derivatives for lithium-ion batteries, J. Am. Chem. Soc. 138(7) (2016) 2374-2382. [14] K.C. Kim, Design strategies for promising organic positive electrodes in lithium-ion batteries:Quinones and carbon materials, Ind. Eng. Chem. Res. 56(42) (2017) 12009-12023. [15] J. Fu, J. Wu, Predicting thermodynamic data from first principles:hydration free energies for common organic molecules, Fluid Phase Equilib 407(2016) 304-313. [16] S. Sheng, M. Miller, J. Wu, Molecular theory of hydration at different temperatures, J. Phys. Chem. B 121(28) (2017) 6898-6908. [17] J. Li, J. Wang, Y. Wang, D. Lu, J. Wu, A multiscale procedure for predicting the hydration free energies of polycyclic aromatic hydrocarbons, J. Chem. Eng. Data 65(4) (2020) 2206-2211. [18] Y. Liu, S. Zhao, J. Wu, A site density functional theory for water:Application to solvation of amino acid side chains, J. Chem. Theory Comput. 9(4) (2013) 1896-1908. [19] Y.u. Liu, J. Fu, J. Wu, High-throughput prediction of the hydration free energies of small molecules from a classical density functional theory, J. Phys. Chem. Lett. 4(21) (2013) 3687-3691. [20] J. Li, J. Fu, X. Huang, D. Lu, J. Wu, Predicting hydration free energies of amphetamine-type stimulants with a customized molecular model, J. Phys. Condens. Matter 28(34) (2016) 344001. [21] J.C. Slater, A simplification of the Hartree-Fock method, Phys. Rev. 81(3) (1951) 385-390. [22] H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem. 91(24) (1987) 6269-6271. [23] J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, Development and testing of a general amber force field, J. Comput. Chem. 25(9) (2004) 1157-1174. [24] A. Jakalian, D.B. Jack, C.I. Bayly, Fast, efficient generation of high-quality atomic charges. AM1-BCC model:II. Parameterization and validation, J. Comput. Chem. 23(16) (2002) 1623-1641. [25] F. Neese, The ORCA program system, Wiley Interdisc. Rev.:Comput. Mol. Sci. 2(1) (2012) 73-78. [26] R. Sander, Compilation of Henry's law constants (version 4.0) for water as a solvent, Atmos. Chem. Phys. 15(8) (2015) 4399-4981. |