[1] N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries, Chem. Rev. 114(23) (2014) 11636-11682. [2] P.K. Nayak, L.T. Yang, W. Brehm, P. Adelhelm, From lithium-ion to sodium-ion batteries:advantages, challenges, and surprises, Angew. Chem. Int. Ed. Engl. 57(1) (2018) 102-120. [3] D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem. 7(1) (2015) 19-29. [4] Y. Kim, K.H. Ha, S.M. Oh, K.T. Lee, High-capacity anode materials for sodiumion batteries, Chemistry 20(38) (2014) 11980-11992. [5] W. Pan, W. Guan, Y. Jiang, Research advances in polyanion-type cathodes for sodium-ion batteries, Acta Phys.-Chim. Sin. 36(2020) 1905017. [6] X.D. Ma, X.H. Xiong, J.Q. Zeng, P.J. Zou, Z. Lin, M.L. Liu, Melamine-assisted synthesis of Fe3N featuring highly reversible crystalline-phase transformation for ultrastable sodium ion storage, J. Mater. Chem. A 8(14) (2020) 6768-6775. [7] F.X. Wu, C.L. Zhao, S.Q. Chen, Y.X. Lu, Y.L. Hou, Y.S. Hu, J. Maier, Y. Yu, Multielectron reaction materials for sodium-based batteries, Mater. Today 21(9) (2018) 960-973. [8] F.X. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries, Chem. Soc. Rev. 49(5) (2020) 1569-1614. [9] Z.M. Liu, X.Y. Yu, X.W.D. Lou, U. Paik, Sb@C coaxial nanotubes as a superior long-life and high-rate anode for sodium ion batteries, Energy Environ. Sci. 9(7) (2016) 2314-2318. [10] H.S. Hou, L.D. Shao, Y. Zhang, G.Q. Zou, J. Chen, X.B. Ji, Large-area carbon nanosheets doped with phosphorus:A high-performance anode material for sodium-ion batteries, Adv. Sci. (Weinh) 4(1) (2017), 1600243. [11] H.S. Hou, X.Q. Qiu, W.F. Wei, Y. Zhang, X.B. Ji, Carbon anode materials for advanced sodium-ion batteries, Adv. Energy Mater. 7(24) (2017), 1602898. [12] B. Cao, X. Li, Recent progress on carbon-based anode materials for Na-ion batteries, Acta Phys-Chim. Sin. 36(2020) 1905003. [13] Z. Zhu, F. Liang, Z. Zhou, X. Zeng, D. Wang, P. Dong, J. Zhao, S. Sun, Y. Zhang, X. Li, Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries, J. Mater. Chem. A 6(2018) 1513-1522. [14] H.S. Hou, C.E. Banks, M.J. Jing, Y. Zhang, X.B. Ji, Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life, Adv. Mater. 27(47) (2015) 7861-7866. [15] M. Lao, Y. Zhang, W. Luo, Q. Yan, W. Sun, S.X. Dou, Alloy-based anode materials toward advanced sodium-ion batteries, Adv. Mater. 29(2017) 1700622. [16] H. Li, J. Wang, L. Jiao, Z. Tao, J. Liang, Spherical nano-SnSb/C composite as a high-performance anode material for sodium ion batteries, Acta Phys-Chim. Sin. 36(2020) 1904017. [17] Y. Zhao, L.P. Wang, M.T. Sougrati, Z. Feng, Y. Leconte, A. Fisher, M. Srinivasan, Z. Xu, A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes, Adv. Energy Mater. 7(2017) 1601424. [18] C. Guo, W.C. Zhang, Y. Liu, J.P. He, S. Yang, M.K. Liu, Q.H. Wang, Z.P. Guo, Constructing CoO/Co3S4 heterostructures embedded in N-doped carbon frameworks for high-performance sodium-ion batteries, Adv. Funct. Mater. 29(29) (2019) 1901925. [19] X. Ma, X. Xiong, P. Zou, W. Liu, F. Wang, L. Liang, Y. Liu, C. Yuan, Z. Lin, General and scalable fabrication of core-shell metal sulfides@c anchored on 3D Ndoped foam toward flexible sodium ion batteries, Small 15(2019) 1903259. [20] X.H. Xiong, C.H. Yang, G.H. Wang, Y.W. Lin, X. Ou, J.H. Wang, B.T. Zhao, M.L. Liu, Z. Lin, K. Huang, SnS nanoparticles electrostatically anchored on threedimensional N-doped graphene as an active and durable anode for sodiumion batteries, Energy Environ. Sci. 10(8) (2017) 1757-1763. [21] M.N. Fan, Z.H. Lin, P. Zhang, X.D. Ma, K.P. Wu, M.L. Liu, X.H. Xiong, Synergistic effect of nitrogen and sulfur dual-doping endows TiO2 with exceptional sodium storage performance, Adv. Energy Mater. 11(6) (2021) 2003037. [22] P.P. Wang, H.Y. Sun, Y.J. Ji, W.H. Li, X. Wang, Three-dimensional assembly of single-layered MoS(2), Adv Mater 26(6) (2014) 964-969. [23] C. Wu, Y. Jiang, P. Kopold, P.A. van Aken, J. Maier, Y. Yu, Peapod-like carbonencapsulated cobalt chalcogenide nanowires as cycle-stable and high-rate materials for sodium-ion anodes, Adv. Mater. 28(33) (2016) 7276-7283. [24] Y.R. Dong, Y. Liu, Y.J. Hu, K. Ma, H. Jiang, C.Z. Li, Boosting reaction kinetics and reversibility in Mott-Schottky VS2/MoS2 heterojunctions for enhanced lithium storage, Sci. Bull. 65(17) (2020) 1470-1478. [25] K. Ma, Y. Liu, H. Jiang, Y.J. Hu, R. Si, H.L. Liu, C.Z. Li, Multivalence-ion intercalation enables ultrahigh 1T phase MoS2 nanoflowers to enhanced sodium-storage performance, CCS Chem. 3(5) (2021) 1472-1482. [26] Y. Li, R.P. Zhang, W. Zhou, X. Wu, H.B. Zhang, J. Zhang, Hierarchical MoS2 hollow architectures with abundant Mo vacancies for efficient sodium storage, ACS Nano 13(5) (2019) 5533-5540. [27] K. Ma, H. Jiang, Y.J. Hu, C.Z. Li, 2D nanospace confined synthesis of pseudocapacitance-dominated MoS2 -in-Ti3C2 superstructure for ultrafast and stable Li/Na-ion batteries, Adv. Funct. Mater. 28(40) (2018) 1804306. [28] Z.T. Shi, W.P. Kang, J. Xu, Y.W. Sun, M. Jiang, T.W. Ng, H.T. Xue, D.Y.W. Yu, W.J. Zhang, C.S. Lee, Hierarchical nanotubes assembled from MoS2-carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries, Nano Energy 22(2016) 27-37. [29] Z. Hu, L.X. Wang, K. Zhang, J.B. Wang, F.Y. Cheng, Z.L. Tao, J. Chen, MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries, Angew. Chem. Int. Ed. Engl. 53(47) (2014) 12794-12798. [30] D.W. Su, S.X. Dou, G.X. Wang, Ultrathin MoS2 nanosheets as anode materials for sodium-ion batteries with superior performance, Adv. Energy Mater. 5(6) (2015) 1401205. [31] F. Zhou, S. Xin, H.W. Liang, L.T. Song, S.H. Yu, Carbon nanofibers decorated with molybdenum disulfide nanosheets:Synergistic lithium storage and enhanced electrochemical performance, Angew. Chem. Int. Ed. Engl. 53(43) (2014) 11552-11556. [32] L. Zhang, H.B. Wu, Y. Yan, X. Wang, X.W.D. Lou, Hierarchical MoS2microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting, Energy Environ. Sci. 7(10) (2014) 3302- 3306. [33] H.F. Li, Q. Yang, F.N. Mo, G.J. Liang, Z.X. Liu, Z.J. Tang, L.T. Ma, J. Liu, Z.C. Shi, C.Y. Zhi, MoS2 nanosheets with expanded interlayer spacing for rechargeable aqueous Zn-ion batteries, Energy Storage Mater. 19(2019) 94-101. [34] H.H. Sun, H.Y. Liu, Z.D. Hou, R. Zhou, X.R. Liu, J.G. Wang, Edge-terminated MoS2 nanosheets with an expanded interlayer spacing on graphene to boost supercapacitive performance, Chem. Eng. J. 387(2020) 124204. [35] Y.F. Li, Y.L. Liang, F.C. Robles Hernandez, H. Deog Yoo, Q.Y. An, Y. Yao, Enhancing sodium-ion battery performance with interlayer-expanded MoS2- PEO nanocomposites, Nano Energy 15(2015) 453-461. [36] S. Wang, D. Zhang, B. Li, C. Zhang, Z.G. Du, H.M. Yin, X.F. Bi, S.B. Yang, Ultrastable in-plane 1T-2H MoS2 heterostructures for enhanced hydrogen evolution reaction, Adv. Energy Mater. 8(25) (2018) 1801345. [37] Q.C. Pan, Q.B. Zhang, F.H. Zheng, Y.Z. Liu, Y.P. Li, X. Ou, X.H. Xiong, C.H. Yang, M. L. Liu, Construction of MoS2/C hierarchical tubular heterostructures for highperformance sodium ion batteries, ACS Nano 12(12) (2018) 12578-12586. [38] Z.M. Wan, J. Shao, J.J. Yun, H.Y. Zheng, T. Gao, M. Shen, Q.T. Qu, H.H. Zheng, Core-shell structure of hierarchical quasi-hollow MoS2 microspheres encapsulated porous carbon as stable anode for Li-ion batteries, Small 10(23) (2014) 4975-4981. [39] X.Y. Yu, H. Hu, Y.W. Wang, H.Y. Chen, X.W. Lou, Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties, Angew. Chem. Int. Ed. Engl. 54(25) (2015) 7395- 7398. [40] Y. Li, J. Qian, M.H. Zhang, S. Wang, Z.H. Wang, M.S. Li, Y. Bai, Q.Y. An, H.J. Xu, F. Wu, L.Q. Mai, C. Wu, Co-construction of sulfur vacancies and heterojunctions in tungsten disulfide to induce fast electronic/ionic diffusion kinetics for sodium-ion batteries, Adv. Mater. 32(47) (2020) e2005802. [41] Q.C. Pan, F.H. Zheng, Y.N. Wu, X. Ou, C.H. Yang, X.H. Xiong, M.L. Liu, MoS2- covered SnS nanosheets as anode material for lithium-ion batteries with high capacity and long cycle life, J. Mater. Chem. A 6(2) (2018) 592-598. [42] C.R. Ma, C.J. Deng, X.Z. Liao, Y.S. He, Z.F. Ma, H. Xiong, Nitrogen and phosphorus codoped porous carbon framework as anode material for high rate lithium-ion batteries, ACS Appl. Mater. Interfaces 10(43) (2018) 36969-36975. [43] Y.C. Du, X.S. Zhu, X.S. Zhou, L.Y. Hu, Z.H. Dai, J.C. Bao, Co3S4 porous nanosheets embedded in graphene sheets as high-performance anode materials for lithium and sodium storage, J. Mater. Chem. A 3(13) (2015) 6787-6791. [44] X. Zhao, H.E. Wang, Y. Yang, Z.G. Neale, R.C. Massé, J. Cao, W. Cai, J.H. Sui, G.Z. Cao, Reversible and fast Na-ion storage in MoO2/MoSe2 heterostructures for high energy-high power Na-ion capacitors, Energy Storage Mater. 12(2018) 241-251. [45] X. Xu, R.S. Zhao, W. Ai, B. Chen, H.F. Du, L.S. Wu, H. Zhang, W. Huang, T. Yu, Controllable design of MoS2 nanosheets anchored on nitrogen-doped graphene:Toward fast sodium storage by tunable pseudocapacitance, Adv. Mater. 30(27) (2018) e1800658. [46] Y. Wang, Q.T. Qu, G.C. Li, T. Gao, F. Qian, J. Shao, W.J. Liu, Q. Shi, H.H. Zheng, 3D interconnected and multiwalled Carbon@MoS2@Carbon hollow nanocables as outstanding anodes for Na-ion batteries, Small 12(43) (2016) 6033-6041. [47] J.X. Wu, Z.H. Lu, K.K. Li, J. Cui, S.S. Yao, M. Ihsan-ul Haq, B.H. Li, Q.H. Yang, F.Y. Kang, F. Ciucci, J.K. Kim, Hierarchical MoS2/Carbon microspheres as long-life and high-rate anodes for sodium-ion batteries, J. Mater. Chem. A 6(14) (2018) 5668-5677. [48] J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles, J. Phys. Chem. C 111(40) (2007) 14925-14931. [49] X.L. Jia, Z. Chen, X. Cui, Y.T. Peng, X.L. Wang, G. Wang, F. Wei, Y.F. Lu, Building robust architectures of carbon and metal oxide nanocrystals toward highperformance anodes for lithium-ion batteries, ACS Nano 6(11) (2012) 9911- 9919. |