[1] M. Maiss, C.A.M. Brenninkmeijer, Atmospheric SF6:Trends, sources, and prospects, Environ. Sci. Technol. 32(20) (1998) 3077-3086. [2] S. Builes, T. Roussel, L.F. Vega, Optimization of the separation of sulfur hexafluoride and nitrogen by selective adsorption using Monte Carlo simulations, AIChE J. 57(4) (2011) 962-974. [3] X.K. Fang, X. Hu, G. Janssens-Maenhout, J. Wu, J.R. Han, S.S. Su, J.B. Zhang, J.X. Hu, Sulfur hexafluoride (SF6) emission estimates for China:An inventory for 1990-2010 and a projection to 2020, Environ. Sci. Technol. 47(8) (2013) 3848- 3855. [4] I. Matito-Martos, J. Álvarez-Ossorio, J.J. Gutiérrez-Sevillano, M. Doblaré, A. Martin-Calvo, S. Calero, Zeolites for the selective adsorption of sulfur hexafluoride, Phys. Chem. Chem. Phys. 17(2015) 18121-18130. [5] I. Senkovska, E. Barea, J.A.R. Navarro, S. Kaskel, Adsorptive capturing and storing greenhouse gases such as sulfur hexafluoride and carbon tetrafluoride using metal-organic frameworks, Microporous Mesoporous Mater. 156(2012) 115-120. [6] E.C. Ihmels, J. Gmehling, Densities of sulfur hexafluoride and dinitrogen monoxide over a wide temperature and pressure range in the sub- and supercritical states, Int. J. Thermophys. 23(3) (2002) 709-743. [7] M.B. Kim, S.J. Lee, C.Y. Lee, Y.S. Bae, High SF6 selectivities and capacities in isostructural metal-organic frameworks with proper pore sizes and highly dense unsaturated metal sites, Microporous Mesoporous Mater. 190(2014) 356-361. [8] I. Cha, S. Lee, J.D. Lee, G.W. Lee, Y. Seo, Separation of SF6 from gas mixtures using gas hydrate formation, Environ. Sci. Technol. 44(16) (2010) 6117-6122. [9] K. Inami, Y. Maeda, Y. Habuchi, M. Yoshimura, H. Hama, Application problems of N2/SF6 mixtures to gas-insulated bus, Electr. Eng. Jpn. 137(4) (2001) 25-31. [10] O. Yamamoto, T. Takuma, A. Kawamura, K. Hashimoto, N. Hatano, M. Kinouchi, SF6 gas recovery from SF6/N2 mixtures using polymer membrane, Electr. Insulat. Magaz. IEEE 18(2002) 32-37. [11] K. Shiojiri, Y. Yanagisawa, A. Yamasaki, F. Kiyono, Separation of F-gases (HFC- 134a and SF6) from gaseous mixtures with nitrogen by surface diffusion through a porous Vycor glass membrane, J. Membr. Sci. 282(1-2) (2006) 442- 449. [12] L. Shao, B.T. Low, T.S. Chung, A.R. Greenberg, Polymeric membranes for the hydrogen economy:Contemporary approaches and prospects for the future, J. Membr. Sci. 327(1-2) (2009) 18-31. [13] J.W. Choi, S. Lee, B. An, S.B. Kim, S.H. Lee, Separation of sulfur hexafluoride from a nitrogen/sulfur hexafluoride mixture using a polymer hollow fiber membrane, Water Air Soil Pollut. 225(2) (2014) 1-9. [14] A. Wolin ′ ska-Grabczyk, A. Jankowski, R. Sekuła, B. Kruczek, Separation of SF6 from binary mixtures with N2 using commercial poly(4-methyl-1-pentene) films, Sep. Sci. Technol. 46(8) (2011) 1231-1240. [15] H. Murase, T. Imai, T. Inohara, M. Toyoda, Use of zeolite filter in portable equipment for recovering SF6/N2 mixtures, IEEE Trans. Dielectr. Electr. Insul. 11(1) (2004) 166-173. [16] P.J. Kim, Y.W. You, H. Park, J.S. Chang, Y.S. Bae, C.H. Lee, J.K. Suh, Separation of SF6 from SF6/N2 mixture using metal-organic framework MIL-100(Fe) granule, Chem. Eng. J. 262(2015) 683-690. [17] A. Takase, H. Kanoh, T. Ohba, Wide carbon nanopores as efficient sites for the separation of SF6 from N2, Sci. Rep. 5(2015) 11994. [18] T. Hasell, M. Miklitz, A. Stephenson, M.A. Little, S.Y. Chong, R. Clowes, L.J. Chen, D. Holden, G.A. Tribello, K.E. Jelfs, A.I. Cooper, Porous organic cages for sulfur hexafluoride separation, J. Am. Chem. Soc. 138(5) (2016) 1653-1659. [19] I. Skarmoutsos, G. Tamiolakis, G.E. Froudakis, Highly selective separation and adsorption-induced phase transition of SF6-N2 fluid mixtures in threedimensional carbon nanotube networks, J. Supercrit. Fluids 113(2016) 89-95. [20] C.Y. Chuah, K. Goh, T.H. Bae, Hierarchically structured HKUST-1 nanocrystals for enhanced SF6 capture and recovery, J. Phys. Chem. C 121(12) (2017) 6748- 6755. [21] X. Zheng, S. Ban, B. Liu, G.J. Chen, Strain-controlled graphdiyne membrane for CO2/CH4 separation:First-principle and molecular dynamic simulation, Chin. J. Chem. Eng. 28(7) (2020) 1898-1903. [22] R.T. Yang, Adsorbents:Fundamentals and Applications, John Wiley & Sons, Hoboken, 2003. [23] D.V. Cao, S. Sircar, Heats of adsorption of pure SF6 and CO2 on silicalite pellets with alumina binder, Ind. Eng. Chem. Res. 40(1) (2001) 156-162. [24] M. Toyoda, H. Murase, T. Imai, H. Naotsuka, A. Kobayashi, K. Takano, K. Ohkuma, SF6 reclaimer from SF6/N2 mixtures by gas separation with molecular sieving effect, IEEE Trans. Power Deliv. 18(2003) 442-448. [25] C.Y. Chuah, Y.Q. Yang, T.H. Bae, Hierarchically porous polymers containing triphenylamine for enhanced SF6 separation, Microporous Mesoporous Mater. 272(2018) 232-240. [26] M.B. Kim, K.M. Kim, T.H. Kim, T.U. Yoon, E.J. Kim, J.H. Kim, Y.S. Bae, Highly selective adsorption of SF6 over N2 in a bromine-functionalized zirconiumbased metal-organic framework, Chem. Eng. J. 339(2018) 223-229. [27] I. Skarmoutsos, M. Eddaoudi, G. Maurin, Highly tunable sulfur hexafluoride separation by interpenetration control in metal organic frameworks, Microporous Mesoporous Mater. 281(2019) 44-49. [28] H. Furukawa, O.M. Yaghi, Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications, J. Am. Chem. Soc. 131(25) (2009) 8875-8883. [29] Z.L. Yang, D.P. Cao, Effect of Li doping on diffusion and separation of hydrogen and methane in covalent organic frameworks, J. Phys. Chem. C 116(23) (2012) 12591-12598. [30] H. Wang, D.P. Cao, Diffusion and separation of H2, CH4, CO2, and N2 in diamond-like frameworks, J. Phys. Chem. C 119(11) (2015) 6324-6330. [31] H. Hayashi, A.P. Côté, H. Furukawa, M. O'Keeffe, O.M. Yaghi, Zeolite A imidazolate frameworks, Nat. Mater. 6(7) (2007) 501-506. [32] K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O'Keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, PNAS 103(27) (2006) 10186-10191. [33] W. Chen, X. Guo, E. Zou, M. Luo, M. Chen, M. Yang, H. Li, C. Jia, C. Deng, C. Sun, B. Liu, L. Yang, G. Chen, A continuous and high-efficiency process to separate coal bed methane with porous Zif-8 slurry:Experimental study and mathematical modelling, Green Energy Environ. 5(2020) 347-363. [34] X. Zeng, F. Chen, D. Cao, Screening metal-organic frameworks for capturing radioactive gas Rn in indoor air, J. Hazard Mater. 366(2019) 624-629. [35] H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.O. Yazaydin, R.Q. Snurr, M. O'Keeffe, J. Kim, Ultrahigh porosity in metal-organic frameworks, Science 329(5990) (2010) 424-428. [36] A.R. Millward, O.M. Yaghi, Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature, J. Am. Chem. Soc. 127(51) (2005) 17998-17999. [37] D.J. Tranchemontagne, K.S. Park, H. Furukawa, J. Eckert, C.B. Knobler, O.M. Yaghi, Hydrogen storage in new metal-organic frameworks, J. Phys. Chem. C 116(24) (2012) 13143-13151. [38] H.M. El-Kaderi, J.R. Hunt, J.L. Mendoza-Cortés, A.P. Côté, R.E. Taylor, M. O'Keeffe, O.M. Yaghi, Designed synthesis of 3D covalent organic frameworks, Science 316(5822) (2007) 268-272. [39] D. Dellis, J. Samios, Molecular force field investigation for Sulfur Hexafluoride:A computer simulation study, Fluid Phase Equilib. 291(1) (2010) 81-89. [40] T. Ohkubo, J. Miyawaki, K. Kaneko, R. Ryoo, N.A. Seaton, Adsorption properties of templated mesoporous carbon (CMK-1) for nitrogen and supercritical methane experiment and GCMC simulation, J. Phys. Chem. B 106(25) (2002) 6523-6528. [41] S.L. Mayo, B.D. Olafson, W.A. Goddard, DREIDING:A generic force field for molecular simulations, J. Phys. Chem. 94(26) (1990) 8897-8909. [42] A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc. 114(25) (1992) 10024-10035. [43] A. Gupta, S. Chempath, M.J. Sanborn, L.A. Clark, R.Q. Snurr, Object-oriented programming paradigms for molecular modeling, Mol. Simul. 29(1) (2003) 29- 46. [44] D.P. Cao, J.Z. Wu, Modeling the selectivity of activated carbons for efficient separation of hydrogen and carbon dioxide, Carbon 43(7) (2005) 1364-1370. [45] X. Peng, X. Cheng, D.P. Cao, Computer simulations for the adsorption and separation of CO2/CH4/H2/N2 gases by UMCM-1 and UMCM-2 metal organic frameworks, J. Mater. Chem. 21(30) (2011) 11259. [46] F. Chen, X.F. Zeng, D.P. Cao, Nitrogen-doped nanoporous carbons for selective separation of Ar/Kr/Xe/Rn gases:An experiment-based simulation study, J. Phys. Chem. C 121(30) (2017) 16308-16315. [47] H. Wang, X.F. Zeng, W.C. Wang, D.P. Cao, Selective capture of trace sulfur gas by porous covalent-organic materials, Chem. Eng. Sci. 135(2015) 373-380. [48] C.Y. Chuah, S. Yu, K. Na, T.H. Bae, Enhanced SF6 recovery by hierarchically structured MFI zeolite, J. Ind. Eng. Chem. 62(2018) 64-71. |