[1] H.J. Lee, W.S. Choi, 2D and 3D bulk materials for environmental remediation: air filtration and oil/water separation, Materials (Basel) 13(24) (2020) E5714. [2] M. Mofokeng, L.N. Nthunya, L. Gutierrez, P. Matabola, S. Mishra, E.N. Nxumalo, Perflurooctyltriethoxy silane and carbon nanotubes-modified PVDF superoleophilic nanofibre membrane for oil-in-water adsorption and recovery, J. Environ. Chem. Eng. 8(6) (2020) 104497. [3] D.L. Zhou, D. Yang, D. Han, Q. Zhang, F. Chen, Q. Fu, Fabrication of superhydrophilic and underwater superoleophobic membranes for fast and effective oil/water separation with excellent durability, J. Membr. Sci. 620(2021) 118898. [4] Y.C. Yang, P. Peng, Q. Yang, D.M. Wang, J.E. Dong, Fabrication of renewable gutta percha/silylated nanofibers membrane for highly effective oil-water emulsions separation, Appl. Surf. Sci. 530(2020) 147163. [5] X. Zhang, B. Wang, X.M. Qin, S.H. Ye, Y.T. Shi, Y.Z. Feng, W.J. Han, C.T. Liu, C.Y. Shen, Cellulose acetate monolith with hierarchical micro/nano-porous structure showing superior hydrophobicity for oil/water separation, Carbohydr. Polym. 241(2020) 116361. [6] A. Salahi, M. Abbasi, T. Mohammadi, Permeate flux decline during UF of oily wastewater: Experimental and modeling, Desalination 251(1–3) (2010) 153–160. [7] Y. Yang, N. Ali, M. Bilal, A. Khan, F. Ali, P. Mao, L. Ni, X. Gao, K. Hong, K. Rasool, H. Iqbal, Robust membranes with tunable functionalities for sustainable oil/water separation, J. Mol. Liq. 321(2021) 114701–114799. [8] F. Sun, T. Li, H. Ren, B. Shiu, H. Peng, J. Lin, C. Lou, Dopamine-decorated lotus leaf-like PVDF/TiO2 membrane with underwater superoleophobic for highly efficient oil-water separation, Process Saf. Environ. Prot. 147(2021) 788–797. [9] Y. Wu, R. Yao, X. Zhang, B. Zhang, T. Wang, Preparation and characterization of ACF/carbon composite membranes for efficient oil/water separation, J. Environ. Chem. Eng. 9(3) (2021) 105–164. [10] X. Zhang, X. Chai, J. Liu, R. Wang, Y. Yang, X. He, Interfacial characteristics in membrane filtration for oil-in-water treatment processes, J. Membr. Sci. 623(2021) 119092–119102. [11] B. Zhang, R. Zhang, D. Huang, Y. Shen, X. Gao, W. Shi, Membrane fouling in microfiltration of alkali/surfactant/polymer flooding oilfield wastewater: Effect of interactions of key foulants, J. Colloid Interface Sci. 570(2020) 20–30. [12] B. Zhang, S. Yu, Y. Zhu, Y. Shen, X. Gao, W. Shi, J.H. Tay, Adsorption mechanisms of crude oil onto polytetrafluoroethylene membrane: Kinetics and isotherm, and strategies for adsorption fouling control, Sep. Purif. Technol. 235(2020) 116212–116220. [13] L. Zhang, R. Takagi, S. Wang, Y. Lin, K. Guan, L. Cheng, H. Matsuyama, In situ formation of ultrathin polyampholyte layer on porous polyketone membrane via a one-step dopamine co-deposition strategy for oil/water separation with ultralow fouling, J. Membr. Sci. 619(2021) 118789–118800. [14] M. Zhou, J. Chen, W. Zhou, J. Sun, H. Tang, Developing composite nanofiltration membranes with highly stable antifouling property based on hydrophilic roughness, Sep. Purif. Technol. 256(2021) 117799–117808. [15] C. Chen, D. Weng, A. Mahmood, S. Chen, J. Wang, Separation mechanism and construction of surfaces with special wettability for oil/water separation, ACS Appl. Mater. Interfaces 11(11) (2019) 11006–11027. [16] K. Huang, P. Rowe, C. Chi, V. Sreepal, T. Bohn, K.G. Zhou, Y. Su, E. Prestat, P.B. Pillai, C.T. Cherian, A. Michaelides, R.R. Nair, Cation-controlled wetting properties of vermiculite membranes and its promise for fouling resistant oil-water separation, Nat. Commun. 11(1) (2020) 1097. [17] M.B.M.Y. Ang, C.R.M. Macni, A.R. Caparanga, S.H. Huang, H.A. Tsai, K.R. Lee, J.Y. Lai, Mitigating the fouling of mixed-matrix cellulose acetate membranes for oil–water separation through modification with polydopamine particles, Chem. Eng. Res. Des. 159(2020) 195–204. [18] C. Cao, M. Ge, J. Huang, S. Li, S. Deng, S. Zhang, Z. Chen, K. Zhang, S.S. Deyab, Y. Lai, Robust fluorine-free superhydrophobic PDMS-ormosil@fabrics for highly effective self-cleaning and efficient oil-water separation, J. Mater. Chem. A 4(31) (2016) 12179–12187. [19] X.T. Zhao, N. Jia, L.J. Cheng, R.X. Wang, C.J. Gao, Constructing antifouling hybrid membranes with hierarchical hybrid nanoparticles for oil-in-water emulsion separation, ACS Omega 4(1) (2019) 2320–2330. [20] C. Wei, L. Lin, Y. Zhao, X. Zhang, X.J. Haung, Fabrication of pH-sensitive superhydrophilic/underwater superoleophobic poly(vinylidene fluoride)-graft-(SiO2 nanoparticles and PAMAM dendrimers) membranes for oil–water separation, ACS Appl. Mater. Interfaces 12(16) (2020) 19130–19139. [21] A. Qin, X. Li, X. Zhao, D. Liu, C. He, Engineering a highly hydrophilic PVDF membrane via binding TiO2 nanoparticles and a PVA layer onto a membrane surface, ACS Appl. Mater. Interfaces 7(16) (2015) 8427–8436. [22] H. Sun, Y. Zhang, S. Li, Y. Bai, L. Shao, Multifunctional core–shell zwitterionic nanoparticles to build robust, stable antifouling membranes via magneticcontrolled surface segregation, ACS Appl. Mater. Interfaces 11(38) (2019) 35501–35508. [23] Z. Xu, T. Wu, J. Shi, W. Wang, K. Teng, X. Qian, M. Shen, H. Deng, X. Tian, C. Li, Manipulating migration behavior of magnetic graphene oxide via magnetic field induced casting and phase separation toward high-performance hybrid ultrafiltration membranes, ACS Appl. Mater. Interfaces 8(28) (2016) 18418–18429. [24] H. Himstedt, A. Sengupta, X. Qian, S.R. Wickramasinghe, Magnetically responsive nano filtration membranes for treatment of coal bed methane produced water, J. Taiwan Inst. Chem. E 94(2019) 97–108. [25] M. Mehrnia, M. Homayoonfal, Fouling mitigation behavior of magnetic responsive nanocomposite membranes in a magnetic membrane bioreactor, J. Membr. Sci. 520(2016) 881–894. [26] Z. Huang, J. Liu, Y. Liu, Y. Xu, B.Q. Liao, Enhanced permeability and antifouling performance of polyether sulfone (PES) membrane via elevating magnetic Ni@MXene nanoparticles to upper layer in phase inversion process, J. Membr. Sci. 623(2021) 119080–119090. [27] S. Raveshiyan, S. Hosseini, J. Karimi-Sabet, Intensification of O2/N2 separation by novel magnetically aligned carbonyl iron powders/polysulfone magnetic mixed matrix membranes, Chem. Eng. Process. –Process Intensification 150(2020) 10786–107898. [28] Y. Liu, L. Shen, H. Lin, W. Yu, Y. Xu, R. Li, T. Sun, Y. He, A novel strategy based on magnetic field assisted preparation of magnetic and photocatalytic membranes with improved performance, J. Membr. Sci. 612(2020) 118378–118392. [29] M. Mertens, M. Bilad, A. Gebreyohannes, Membrane development for improved performance of a magnetically induced vibration system for anaerobic sludge filtration, Sep. Purif. Technol. 200(2018) 120–129. [30] N. Azmi, Q. Ng, S. Low, Ultrafiltration of aquatic humic substances through magnetically responsive polysulfone membranes, Sep. Purif. Technol. 132(21) (2015) 41874–41883. [31] G. Song, A. Sengupta, X. Qian, S.R. Wickramasinghe, Investigation on suppression of fouling by magnetically responsive nanofiltration membranes, Sep. Purif. Technol. 205(2018) 94–104. [32] S. Gee, B. Johnson, A.L. Smith, Optimizing electrospinning parameters for piezoelectric PVDF nanofiber membranes, J. Membr. Sci. 563(2018) 804–812. [33] M. Cao, Y. Chen, X. Huang, L. Sun, J. Xu, K. Yang, X. Zhao, L. Lin, Construction of PA6-rGO nanofiber membrane via electrospraying combining electrospinning processes for emulsified oily sewage purification, J. Taiwan Inst. Chem. E 118(2021) 232–244. [34] Y. Yang, L. Li, Q. Zhang, W. Chen, S. Lin, Z. Wang, W. Li, Enhanced coalescence separation of oil-in-water emulsions using electrospun PVDF nanofibers, Chin. J. Chem. Eng. 38(2021) 76–83. [35] Y. Du, D. Wang, W. Wang, J. Fu, Electrospun nanofibrous polyphenylene oxide membranes for high-salinity water desalination by direct contact membrane distillation, ACS Appl. Mater. Interfaces 7(24) (2019) 20060–20069. [36] J. Li, Y.N. Zhou, Z. Luo, Smart fiber membrane for pH-induced oil/water separation, ACS Appl. Mater. Interfaces 7(35) (2015) 19643–19650. [37] Y. Yang, Y. Li, L. Cao, Y. Wang, L. Li, W. Li, Electrospun PVDF-SiO2 nanofibrous membranes with enhanced surface roughness for oil-water coalescence separation, Sep. Purif. Technol. 269(2021) 118726. [38] C. Hui, C. Shen, T. Yang, L. Bao, J. Tian, H. Ding, C. Li, H.J. Gao, Large-scale Fe3O4 nanoparticles soluble in water synthesized by a facile method, J. Phys. Chem. C 112(30) (2008) 11336–11339. [39] M. Basu, A. Sinha, S. Sarkar, M. Pradhan, T. Pal, Hierarchical Superparamagnetic Magnetite Nanowafers from a Resin-Bound [Fe(bpy)3]2+ Matrix, Langmuir 26(8) (2010) 5836–5842. [40] S. Ge, X. Shi, K. Sun, C. Li, C. Uher, J.R.B. Jr, M.M.B. Holl, B.G. Orr, Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties, J. Phys. Chem. C 113(31) (2009) 13593–13599. [41] H. Li, L. Zhu, J. Zhang, T. Guo, X. Li, W. Xing, Q. Xue, High-efficiency separation performance of oil-water emulsions of polyacrylonitrile nanofibrous membrane decorated with metal-organic frameworks, Appl. Surf. Sci. 476(15) (2019) 61–69. |