中国化学工程学报 ›› 2022, Vol. 42 ›› Issue (2): 91-103.DOI: 10.1016/j.cjche.2021.08.028
• Recent Advances in Adsorptive Separation Materials and Technologies • 上一篇 下一篇
Jiajia Wang, Lizhi Wang, You Wang, Du Zhang, Qin Xiao, Jianhan Huang, You-Nian Liu
收稿日期:
2021-05-30
修回日期:
2021-08-21
出版日期:
2022-02-28
发布日期:
2022-03-30
通讯作者:
Jianhan Huang,E-mail:jianhanhuang@csu.edu.cn
Jiajia Wang, Lizhi Wang, You Wang, Du Zhang, Qin Xiao, Jianhan Huang, You-Nian Liu
Received:
2021-05-30
Revised:
2021-08-21
Online:
2022-02-28
Published:
2022-03-30
Contact:
Jianhan Huang,E-mail:jianhanhuang@csu.edu.cn
摘要: Carbon capture, storage, and utilization (CCSU) is recognized as an effective method to reduce the excessive emission of CO2. Absorption by amine aqueous solutions is considered highly efficient for CO2 capture from the flue gas because of the large CO2 capture capacity and high selectivity. However, it is often limited by the equipment corrosion and the high desorption energy consumption, and adsorption of CO2 using solid adsorbents has been receiving more attention in recent years due to its simplicity and high efficiency. More recently, a great number of porous organic polymers (POPs) have been designed and constructed for CO2 capture, and they are proven promising solid adsorbents for CO2 capture due to their high Brunauer-Emmett-Teller (BET) surface area (SBET), adjustable pore size and easy functionalization. In particular, they usually have rigid skeleton, permanent porosity, and good physiochemical stability. In this review, we have a detailed review for the different POPs developed in recent years, not only the design strategy, but also the special structure for CO2 capture. The outlook of the opportunities and challenges of the POPs is also proposed.
Jiajia Wang, Lizhi Wang, You Wang, Du Zhang, Qin Xiao, Jianhan Huang, You-Nian Liu. Recent progress in porous organic polymers and their application for CO2 capture[J]. 中国化学工程学报, 2022, 42(2): 91-103.
Jiajia Wang, Lizhi Wang, You Wang, Du Zhang, Qin Xiao, Jianhan Huang, You-Nian Liu. Recent progress in porous organic polymers and their application for CO2 capture[J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 91-103.
[1] X.T. Ma, Y.J. Li, C.Y. Chi, W. Zhang, J.W. Shi, L.B. Duan, CO2 capture performance of mesoporous synthetic sorbent fabricated using carbide slag under realistic calcium looping conditions, Energy Fuels 31 (7) (2017) 7299-7308 [2] H.J. Wang, C. Chen, Y.P. Chen, H. Wan, L. Dong, G.F. Guan, Construction of ultramicropore-enriched N-doped carbons for CO2 capture:Self-decomposition of polyethyleneimine-based precursor to promote pore formation and surface polarity, J. Environ. Chem. Eng. 9 (2) (2021) 105046 [3] Y.K. Kim, G.M. Kim, J.W. Lee, Highly porous N-doped carbons impregnated with sodium for efficient CO2 capture, J. Mater. Chem. A 3 (20) (2015) 10919-10927 [4] S. Kumar, M.Y. Wani, C.T. Arranja, J. de A e Silva, B. Avula, A.J.F.N. Sobral, Porphyrins as nanoreactors in the carbon dioxide capture and conversion:a review, J. Mater. Chem. A 3 (39) (2015) 19615-19637 [5] G. Singh, J. Lee, A. Karakoti, R. Bahadur, J.B. Yi, D.Y. Zhao, K. AlBahily, A. Vinu, Emerging trends in porous materials for CO2 capture and conversion, Chem. Soc. Rev. 49 (13) (2020) 4360-4404 [6] S. Mehla, A.E. Kandjani, R. Babarao, A.F. Lee, S. Periasamy, K. Wilson, S. Ramakrishna, S.K. Bhargava, Porous crystalline frameworks for thermocatalytic CO2 reduction:an emerging paradigm, Energy Environ. Sci. 14 (1) (2021) 320-352 [7] S. Sethupathi, M. Zhang, A. Rajapaksha, S. Lee, N. Mohamad Nor, A. Mohamed, M. Al-Wabel, S. Lee, Y. Ok, Biochars as potential adsorbers of CH4, CO2 and H2S, Sustainability 9 (1) (2017) 121 [8] Y. Li, R. Xu, X. Wang, B.B. Wang, J.L. Cao, J. Yang, J.P. Wei, Waste wool derived nitrogen-doped hierarchical porous carbon for selective CO2 capture, RSC Adv. 8 (35) (2018) 19818-19826 [9] C.L. Xin, Y. Ren, Z.F. Zhang, L.L. Liu, X. Wang, J.M. Yang, Enhancement of hydrothermal stability and CO2 adsorption of Mg-MOF-74/MCF composites, ACS Omega 6 (11) (2021) 7739-7745 [10] H. Gang, Q.H. Qian, K.M. Rodriguez, Z.P. Smith, Hydrothermal synthesis of sub-20 nm amine-functionalized MIL-101(Cr) nanoparticles with high surface area and enhanced CO2 uptake, Ind. Eng. Chem. Res. 59 (16) (2020) 7888-7900 [11] J.Y. Lai, L.H. Ngu, S.S. Hashim, J.J. Chew, J. Sunarso, Review of oil palm-derived activated carbon for CO2 capture, Carbon Lett. 31 (2) (2021) 201-252 [12] G. Jiangfei, W. Lizhi, D. Zhang, J. Huang, Amino-functionalized porphyrin-based porous organic polymers for CO2 capture and Hg2+ removal.[J]. Energ. Fuel 34 (8) (2020) 9771-9778 [13] R.R. Yuan, Z.J. Yan, A. Shaga, H.M. He, Solvent-free mechanochemical synthesis of a carbazole-based porous organic polymer with high CO2 capture and separation, J. Solid State Chem. 287 (2020) 121327 [14] P. Bhanja, A. Modak, A. Bhaumik, Porous organic polymers for CO2 storage and conversion reactions, ChemCatChem 11 (1) (2019) 244-257 [15] L.J. Huang, R.Q. Liu, J. Yang, Q. Shuai, B. Yuliarto, Y.V. Kaneti, Y. Yamauchi, Nanoarchitectured porous organic polymers and their environmental applications for removal of toxic metal ions, Chem. Eng. J. 408 (2021) 127991 [16] L.X. Tan, B.E. Tan, Hypercrosslinked porous polymer materials:design, synthesis, and applications, Chem Soc Rev 46 (11) (2017) 3322-3356 [17] K. Huang, J.Y. Zhang, F.J. Liu, S. Dai, Synthesis of porous polymeric catalysts for the conversion of carbon dioxide, ACS Catal. 8 (10) (2018) 9079-9102 [18] J. Chen, T. Qiu, W. Yan, C.F.J. Faul, Exploiting Hansen solubility parameters to tune porosity and function in conjugated microporous polymers, J. Mater. Chem. A 8 (43) (2020) 22657-22665 [19] A.Z. Peng, S.C. Qi, X. Liu, D.M. Xue, S.S. Peng, G.X. Yu, X.Q. Liu, L.B. Sun, N-doped porous carbons derived from a polymer precursor with a record-high N content:Efficient adsorbents for CO2 capture, Chem. Eng. J. 372 (2019) 656-664 [20] L. Hong, S. Ju, X. Liu, Q. Zhuang, G. Zhan, X. Yu, Highly selective CO2 uptake in novel fishnet-like polybenzoxazine-based porous carbon.[J]. Energ. Fuel 33 (11) (2019) 11454-11464 [21] M.Q. Liu, L.S. Shao, J.H. Huang, Y.N. Liu, O-containing hyper-cross-linked polymers and porous carbons for CO2 capture, Microporous Mesoporous Mater. 264 (2018) 104-111 [22] ACS Appl. Nano Mater [23] L. Shao, Y. Sang, N. Liu, J. Liu, P. Zhan, J. Huang, J. Chen, Selectable microporous carbons derived from poplar wood by three preparation routes for CO2 capture.[J]. ACS Omega 5 (28) (2020) 17450-17462 [24] L. Shao, M. Liu, Y. Sang, P. Zhan, J. Chen, J. Huang, Nitrogen-doped ultrahigh microporous carbons derived from two nitrogen-containing post-cross-linked polymers for efficient CO2 capture.[J]. J. Chem. Eng. Data 65 (4) (2020) 2238-2250 [25] W. Wang, M. Zhou, D. Yuan, Carbon dioxide capture in amorphous porous organic polymers.[J]. J.Mater. Chem. A 5 (4) (2017) 1334-1347 [26] N. Huang, G. Day, X.Y. Yang, H. Drake, H.C. Zhou, Engineering porous organic polymers for carbon dioxide capture, Sci. China Chem. 60 (8) (2017) 1007-1014 [27] N. Zhang, A. Ishag, Y. Li, H.H. Wang, H. Guo, P. Mei, Q. Meng, Y.B. Sun, Recent investigations and progress in environmental remediation by using covalent organic framework-based adsorption method:a review, J. Clean. Prod. 277 (2020) 123360 [28] Z. Wang, S. Zhang, Y. Chen, Z. Zhang, S. Ma, Covalent organic frameworks for separation applications.[J]. Chem. Soc. Rev 49 (3) (2020) 708-735 [29] V.A. Davankov, M.P. Tsyurupa, Structure and properties of hypercrosslinked polystyrene-the first representative of a new class of polymer networks, React. Polym. 13 (1-2) (1990) 27-42 [30] S.J. Xu, Y.L. Luo, B.E. Tan, Recent development of hypercrosslinked microporous organic polymers, Macromol Rapid Commun 34 (6) (2013) 471-484 [31] L.S. Shao, Y.F. Sang, N. Liu, Q. Wei, F. Wang, P. Zhan, W.H. Luo, J.H. Huang, J.N. Chen, One-step synthesis of N-containing hyper-cross-linked polymers by two crosslinking strategies and their CO2 adsorption and iodine vapor capture, Sep. Purif. Technol. 262 (2021) 118352 [32] V.A. Davankov, M.P. Tsyurupa, S.V. Rogozhin, On factors determining the swelling ability of cross-linked polymers, II.[J]. Macromol. Mater. Eng 53 (1) (1976) 179-187 [33] M.P. Tsyurupa, V.A. Davankov, Hypercrosslinked polymers:basic principle of preparing the new class of polymeric materials, React. Funct. Polym. 53 (2-3) (2002) 193-203 [34] L. Ding, H. Gao, F. Xie, W. Li, H. Bai, L. Li, Porosity-enhanced polymers from hyper-cross-linked polymer precursors.[J]. Macromolecules 50 (3) (2017) 956-962 [35] L.Z. Wang, J.F. Guo, X.Y. Xiang, Y.F. Sang, J.H. Huang, Melamine-supported porous organic polymers for efficient CO2 capture and Hg2+ removal, Chem. Eng. J. 387 (2020) 124070 [36] L.Z. Wang, Q. Xiao, D. Zhang, W. Kuang, J.H. Huang, Y.N. Liu, Postfunctionalization of porous organic polymers based on Friedel-Crafts acylation for CO2 and Hg2+ capture, ACS Appl Mater Interfaces 12 (32) (2020) 36652-36659 [37] L. Wang, G. Chen, Q. Xiao, D. Zhang, Y. Sang, J. Huang, Bifunctional porous organic polymers based on postfunctionalization of the ketone-based polymers.[J]. Ind. Eng. Chem. Res 59 (43) (2020) 19117-19125 [38] D.G. Jia, L. Ma, Y. Wang, W.L. Zhang, J. Li, Y. Zhou, J. Wang, Efficient CO2 enrichment and fixation by engineering micropores of multifunctional hypercrosslinked ionic polymers, Chem. Eng. J. 390 (2020) 124652 [39] C.D. Wood, B.E. Tan, A. Trewin, F.B. Su, M.J. Rosseinsky, D. Bradshaw, Y. Sun, L. Zhou, A.I. Cooper, Microporous organic polymers for methane storage, Adv. Mater. 20 (10) (2008) 1916-1921 [40] Y.L. Luo, S.C. Zhang, Y.X. Ma, W. Wang, B.E. Tan, Microporous organic polymers synthesized by self-condensation of aromatic hydroxymethyl monomers, Polym. Chem. 4 (4) (2013) 1126-1131 [41] Y.Q. Xie, Q. Sun, Y.W. Fu, L. Song, J. Liang, X. Xu, H.T. Wang, J.H. Li, S. Tu, X. Lu, J. Li, Sponge-like quaternary ammonium-based poly(ionic liquid)s for high CO2 capture and efficient cycloaddition under mild conditions, J. Mater. Chem. A 5 (48) (2017) 25594-25600 [42] Y.Q. Xie, J. Liang, Y.W. Fu, M.T. Huang, X. Xu, H.T. Wang, S. Tu, J. Li, Hypercrosslinked mesoporous poly(ionic liquid)s with high ionic density for efficient CO2 capture and conversion into cyclic carbonates, J. Mater. Chem. A 6 (15) (2018) 6660-6666 [43] K. Huang, F.J. Liu, S. Dai, Solvothermal synthesis of hierarchically nanoporous organic polymers with tunable nitrogen functionality for highly selective capture of CO2, J. Mater. Chem. A 4 (34) (2016) 13063-13070 [44] K. Huang, F.J. Liu, L.L. Jiang, S. Dai, Aqueous and template-free synthesis of meso-macroporous polymers for highly selective capture and conversion of carbon dioxide, ChemSusChem 10 (21) (2017) 4144-4149 [45] P.X. Li, L.J. Chen, M. Bertuzzo, S.B. Ren, L.Y. Zhou, Y.Q. Lin, W.P. Jia, X.Y. Chen, D.M. Han, Pyrene-based hypercrosslinked microporous resins for effective CO2 capture, J. Appl. Polym. Sci. 136 (16) (2019) 47448 [46] B.Y. Li, Z.H. Guan, X.J. Yang, W.D. Wang, W. Wang, I. Hussain, K.P. Song, B.E. Tan, T. Li, Multifunctional microporous organic polymers, J. Mater. Chem. A 2 (30) (2014) 11930 [47] Y. Cui, Z. Xu, H.-Y. Li, D.J. Young, Z.-G. Ren, H.-X. Li, Synthesis of a pyrazole-based microporous organic polymer for high-performance CO2 capture and alkyne carboxylation.[J]. ACS Appl. Polym. Mater 2 (11) (2020) 4512-4520 [48] A.H. Alahmed, M.E. Briggs, A.I. Cooper, D.J. Adams, Post-synthetic fluorination of Scholl-coupled microporous polymers for increased CO2 uptake and selectivity, J. Mater. Chem. A 7 (2) (2019) 549-557 [49] B.Y. Li, R.N. Gong, W. Wang, X. Huang, W. Zhang, H.M. Li, C.X. Hu, B.E. Tan, A new strategy to microporous polymers:knitting rigid aromatic building blocks by external cross-linker, Macromolecules 44 (8) (2011) 2410-2414 [50] X. Zhu, S.M. Ding, C.W. Abney, K.L. Browning, R.L. Sacci, G.M. Veith, C.C. Tian, S. Dai, Superacid-promoted synthesis of highly porous hypercrosslinked polycarbazoles for efficient CO2 capture, Chem Commun (Camb) 53 (54) (2017) 7645-7648 [51] C.H. Lau, T.D. Lu, S.P. Sun, X.F. Chen, M. Carta, D.M. Dawson, Continuous flow knitting of a triptycene hypercrosslinked polymer, Chem Commun (Camb) 55 (59) (2019) 8571-8574 [52] A.E. Sadak, A comparative gas sorption study of dicarbazole-derived microporous hyper-crosslinked polymers, Microporous Mesoporous Mater. 311 (2021) 110727 [53] A. Hassan, S. Goswami, A. Alam, R. Bera, N. Das, Triptycene based and nitrogen rich hyper cross linked polymers (TNHCPs) as efficient CO2 and iodine adsorbent, Sep. Purif. Technol. 257 (2021) 117923 [54] W.L. Zhang, F.P. Ma, L. Ma, Y. Zhou, J. Wang, Imidazolium-functionalized ionic hypercrosslinked porous polymers for efficient synthesis of cyclic carbonates from simulated flue gas, ChemSusChem 13 (2) (2020) 341-350 [55] Y.F. Sang, J.H. Huang, Benzimidazole-based hyper-cross-linked poly(ionic liquid)s for efficient CO2 capture and conversion, Chem. Eng. J. 385 (2020) 123973 [56] S.S. Hou, S.L. Wang, X.J. Long, B.E. Tan, Knitting polycyclic aromatic hydrocarbon-based microporous organic polymers for efficient CO2 capture, RSC Adv. 8 (19) (2018) 10347-10354 [57] X. Dong, A. Akram, B. Comesaña-Gándara, X. Dong, Q. Ge, K. Wang, S.-P. Sun, B. Jin, C.H. Lau, Recycling plastic waste for environmental remediation in water purification and CO2 capture.[J]. ACS Appl. Polym. Mater 2 (7) (2020) 2586-2593 [58] F.J. Liu, K. Huang, Q. Wu, S. Dai, Solvent-free self-assembly to the synthesis of nitrogen-doped ordered mesoporous polymers for highly selective capture and conversion of CO 2, Adv. Mater. 29 (27) (2017) 1700445 [59] F.J. Liu, K. Huang, C.J. Yoo, C. Okonkwo, D.J. Tao, C.W. Jones, S. Dai, Facilely synthesized meso-macroporous polymer as support of poly(ethyleneimine) for highly efficient and selective capture of CO2, Chem. Eng. J. 314 (2017) 466-476 [60] S.-B. Ren, P.-X. Li, A. Stephenson, L. Chen, M.E. Briggs, R. Clowes, A. Alahmed, K.-K. Li, W.-P. Jia, D.-M. Han, 1,3-Diyne-linked conjugated microporous polymer for selective CO2 capture.[J]. Ind. Eng. Chem. Res 57 (28) (2018) 9254-9260 [61] S. Wang, Y.C. Liu, Y. Yu, J.F. Du, Y.Z. Cui, X.W. Song, Z.Q. Liang, Conjugated microporous polymers based on biphenylene for CO2 adsorption and luminescence detection of nitroaromatic compounds, New J. Chem. 42 (12) (2018) 9482-9487 [62] C. Yao, D. Cui, Y.A. Zhu, W. Xie, S.R. Zhang, G.J. Xu, Y.H. Xu, Synthetic control of the polar units in poly(thiophene carbazole) porous networks for effective CO2 capture, New J. Chem. 43 (18) (2019) 6838-6842 [63] Z.Q. Tan, H.M. Su, Y.W. Guo, H. Liu, B. Liao, A.M. Amin, Q.Q. Liu, Ferrocene-based conjugated microporous polymers derived from Yamamoto coupling for gas storage and dye removal, Polymers 12 (3) (2020) 719 [64] Y. Yuan, P. Cui, Y.Y. Tian, X.Q. Zou, Y.X. Zhou, F.X. Sun, G.S. Zhu, Coupling fullerene into porous aromatic frameworks for gas selective sorption, Chem Sci 7 (6) (2016) 3751-3756 [65] A.I. Cooper, Conjugated microporous polymers, Adv. Mater. 21 (12) (2009) 1291-1295 [66] G. Cheng, T. Hasell, A. Trewin, D.J. Adams, A.I. Cooper, Soluble conjugated microporous polymers, Angew Chem Int Ed Engl 51 (51) (2012) 12727-12731 [67] J.X. Jiang, A. Trewin, D.J. Adams, A.I. Cooper, Band gap engineering in fluorescent conjugated microporous polymers, Chem. Sci. 2 (9) (2011) 1777 [68] C. Xu, N. Hedin, Synthesis of microporous organic polymers with high CO2-over-N2 selectivity and CO2 adsorption, J. Mater. Chem. A 1 (10) (2013) 3406 [69] Jiang JX, Su F, Trewin A, Wood CD, Campbell NL, Niu H, Dickinson C, Ganin AY, Rosseinsky MJ, Khimyak YZ, Cooper AI, Conjugated microporous poly(aryleneethynylene) networks, Angew Chem Int Ed Engl 46 (45) (2007) 8574-8578 [70] Q. Chen, J.X. Wang, F. Yang, D. Zhou, N. Bian, X.J. Zhang, C.G. Yan, B.H. Han, Tetraphenylethylene-based fluorescent porous organic polymers:preparation, gas sorption properties and photoluminescence properties, J. Mater. Chem. 21 (35) (2011) 13554 [71] Y.Z. Liao, H.G. Wang, M.F. Zhu, A. Thomas, Efficient supercapacitor energy storage using conjugated microporous polymer networks synthesized from Buchwald-hartwig coupling, Adv. Mater. 30 (12) (2018) 1705710 [72] J.W. Guo, X. Li, S.Q. Fu, R. Tong, P.D. Topham, J.W. Wang, Microporous frameworks with conjugated π-electron skeletons for enhanced gas and organic vapor capture, Microporous Mesoporous Mater. 267 (2018) 80-83 [73] S.J. Yang, X.S. Ding, B.H. Han, Conjugated microporous polymers with extended π-structures for organic vapor adsorption, Macromolecules 51 (3) (2018) 947-953 [74] S. Mane, Y.-X. Li, X.-Q. Liu, M.B. Yue, L.-B. Sun, Development of adsorbents for selective carbon capture:role of homo- and cross-coupling in conjugated microporous polymers and their carbonized derivatives.[J]. ACS Sustain. Chem. Eng 6 (12) (2018) 17419-17426 [75] C. Xu, Y.A. Zhu, C. Yao, W. Xie, G.J. Xu, S.R. Zhang, Y.N. Zhao, Y.H. Xu, Facile synthesis of tetraphenylethene-based conjugated microporous polymers as adsorbents for CO2 and organic vapor uptake, New J. Chem. 44 (2) (2020) 317-321 [76] H. Zhou, B. Zhao, C. Fu, Z.Q. Wu, C.G. Wang, Y. Ding, B.H. Han, A.G. Hu, Synthesis of conjugated microporous polymers through cationic cyclization polymerization, Macromolecules 52 (10) (2019) 3935-3941 [77] Y.H. Xu, D. Cui, S.R. Zhang, G.J. Xu, Z.M. Su, Facile synthesis of conjugated microporous polymer-based porphyrin units for adsorption of CO2 and organic vapors, Polym. Chem. 10 (7) (2019) 819-822 [78] Y. Wang, X. Ma, B.S. Ghanem, F. Alghunaimi, I. Pinnau, Y. Han, Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations, Mater. Today Nano 3 (2018) 69-95 [79] N.B. McKeown, S. Hanif, K. Msayib, C.E. Tattershall, P.M. Budd, Porphyrin-based nanoporous network polymers, Chem. Commun. Camb. Engl. (23) (2002) 2782-2783 [80] N.B. McKeown, S. Makhseed, P.M. Budd, Phthalocyanine-based nanoporous network polymers, Chem Commun (Camb) (23) (2002) 2780-2781 [81] N.B. McKeown, P.M. Budd, K.J. Msayib, B.S. Ghanem, H.J. Kingston, C.E. Tattershall, S. Makhseed, K.J. Reynolds, D. Fritsch, Polymers of intrinsic microporosity (PIMs):bridging the void between microporous and polymeric materials, Chemistry 11 (9) (2005) 2610-2620 [82] Z. Tong, A.K. Sekizkardes, Recent developments in high-performance membranes for CO2 separation, Membranes (Basel) 11 (2) (2021) 156 [83] M.M. Khan, S. Shishatskiy, V. Filiz, Mixed matrix membranes of boron icosahedron and polymers of intrinsic microporosity (PIM-1) for gas separation, Membranes (Basel) 8 (1) (2018) 1-18 [84] A. Fuoco, B. Comesaña-Gándara, M. Longo, E. Esposito, M. Monteleone, I. Rose, C.G. Bezzu, M. Carta, N.B. McKeown, J.C. Jansen, Temperature dependence of gas permeation and diffusion in triptycene-based ultrapermeable polymers of intrinsic microporosity, ACS Appl Mater Interfaces 10 (42) (2018) 36475-36482 [85] N.B. Pramanik, S.L. Regen, Layer-by-layer assembly of a polymer of intrinsic microporosity:targeting the CO2/N2 separation problem, Chem Commun (Camb) 55 (30) (2019) 4347-4350 [86] R. Malpass-Evans, I. Rose, A. Fuoco, P. Bernardo, G. Clarizia, N.B. McKeown, J.C. Jansen, M. Carta, Effect of bridgehead methyl substituents on the gas permeability of tröger's-base derived polymers of intrinsic microporosity, Membranes (Basel) 10 (4) (2020) 1-12 [87] X.L. Chen, L. Wu, H.M. Yang, Y. Qin, X.H. Ma, N.W. Li, Tailoring the microporosity of polymers of intrinsic microporosity for advanced gas separation by atomic layer deposition, Angew Chem Int Ed Engl 60 (33) (2021) 17875-17880 [88] T. Ben, H. Ren, S.Q. Ma, D.P. Cao, J.H. Lan, X.F. Jing, W.C. Wang, J. Xu, F. Deng, J.M. Simmons, S.L. Qiu, G.S. Zhu, Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area, Angew Chem Int Ed Engl 48 (50) (2009) 9457-9460 [89] Z.Q. Tian, S. Dai, D.E. Jiang, Confined ionic liquid in an ionic porous aromatic framework for gas separation, ACS Appl. Polym. Mater. 1 (1) (2019) 95-102 [90] T. Ben, C.Y. Pei, D.L. Zhang, J. Xu, F. Deng, X.F. Jing, S.L. Qiu, Gas storage in porous aromatic frameworks (PAFs), Energy Environ. Sci. 4 (10) (2011) 3991 [91] K. Konstas, J.W. Taylor, A.W. Thornton, C.M. Doherty, W.X. Lim, T.J. Bastow, D.F. Kennedy, C.D. Wood, B.J. Cox, J.M. Hill, A.J. Hill, M.R. Hill, Lithiated porous aromatic frameworks with exceptional gas storage capacity, Angew Chem Int Ed Engl 51 (27) (2012) 6639-6642 [92] A. Comotti, F. Castiglioni, S. Bracco, J. Perego, A. Pedrini, M. Negroni, P. Sozzani, Fluorinated porous organic frameworks for improved CO2 and CH4 capture, Chem. Commun. 55 (61) (2019) 8999-9002 [93] Y. Tian, G. Zhu, Porous aromatic frameworks (PAFs).[J]. Chem. Rev 120 (16) (2020) 8934-8986 [94] S.H. Zhang, J.L. Li, J. Liu, S.S. Jiang, X.L. Chen, H. Ren, T.X. Liu, X.Q. Zou, G.S. Zhu, Mixed monomer derived porous aromatic frameworks with superior membrane performance for CO2 capture, J. Membr. Sci. 632 (2021) 119372 [95] H. Wang, H. Wang, Z.W. Wang, L. Tang, G.M. Zeng, P. Xu, M. Chen, T. Xiong, C.Y. Zhou, X.Y. Li, D.L. Huang, Y. Zhu, Z.X. Wang, J.W. Tang, Covalent organic framework photocatalysts:structures and applications, Chem Soc Rev 49 (12) (2020) 4135-4165 [96] A.P. Côté, A.I. Benin, N.W. Ockwig, M. O'Keeffe, A.J. Matzger, O.M. Yaghi, Porous, crystalline, covalent organic frameworks, Science 310 (5751) (2005) 1166-1170 [97] M.G. Rabbani, A.K. Sekizkardes, Z. Kahveci, T.E. Reich, R.S. Ding, H.M. El-Kaderi, A 2D mesoporous imine-linked covalent organic framework for high pressure gas storage applications, Chemistry 19 (10) (2013) 3324-3328 [98] G. Kumar, M. Singh, R. Goswami, S. Neogi, Structural dynamism-actuated reversible CO2 adsorption switch and postmetalation-induced visible light cα-H photocyanation with rare size selectivity in N-functionalized 3D covalent organic framework, ACS Appl Mater Interfaces 12 (43) (2020) 48642-48653 [99] S.S. Dhankhar, C.M. Nagaraja, Porous nitrogen-rich covalent organic framework for capture and conversion of CO2 at atmospheric pressure conditions, Microporous Mesoporous Mater. 308 (2020) 110314 [100] R. Wang, W.F. Kong, T. Zhou, C.C. Wang, J. Guo, Organobase modulated synthesis of high-quality β-ketoenamine-linked covalent organic frameworks, Chem Commun (Camb) 57 (3) (2021) 331-334 [101] H. Wei, S.Z. Chai, N.T. Hu, Z. Yang, L.M. Wei, L. Wang, The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity, Chem Commun (Camb) 51 (61) (2015) 12178-12181 [102] S.F. Huang, Y.M. Hu, L.L. Tan, S. Wan, S. Yazdi, Y.H. Jin, W. Zhang, Highly C2/C1-selective covalent organic frameworks substituted with azo groups, ACS Appl Mater Interfaces 12 (46) (2020) 51517-51522 [103] D.B. Shinde, M. Ostwal, X.B. Wang, A.M. Hengne, Y. Liu, G. Sheng, K.W. Huang, Z.P. Lai, Chlorine-functionalized keto-enamine-based covalent organic frameworks for CO2 separation and capture, CrystEngComm 20 (47) (2018) 7621-7625 [104] Z. Kahveci, T. Islamoglu, G.A. Shar, R.S. Ding, H.M. El-Kaderi, Targeted synthesis of a mesoporous triptycene-derived covalent organic framework, CrystEngComm 15 (8) (2013) 1524-1527 [105] R.A. Maia, F. Lopes Oliveira, V. Ritleng, Q. Wang, B. Louis, P. Mothé Esteves, CO2 capture by hydroxylated azine-based covalent organic frameworks, Chemistry 27 (30) (2021) 8048-8055 [106] N. Bagherian, A.R. Karimi, A. Amini, Chemically stable porous crystalline macromolecule hydrazone-linked covalent organic framework for CO2 capture, Colloids Surfaces A:Physicochem. Eng. Aspects 613 (2021) 126078 [107] S. Xiong, L. Li, L. Dong, J. Tang, G. Yu, C. Pan, Covalent-organic frameworks (COFs)-based membranes for CO2 separation.[J]. J. CO2 Util 41 (2020) 101224 [108] S. Das, T. Ben, S.L. Qiu, V. Valtchev, Two-dimensional COF-three-dimensional MOF dual-layer membranes with unprecedentedly high H2/CO2 selectivity and ultrahigh gas permeabilities, ACS Appl Mater Interfaces 12 (47) (2020) 52899-52907 [109] P. Kuhn, A. Forget, D.S. Su, A. Thomas, M. Antonietti, From microporous regular frameworks to mesoporous materials with ultrahigh surface area:dynamic reorganization of porous polymer networks, J Am Chem Soc 130 (40) (2008) 13333-13337 [110] Z.Z. Yang, S. Wang, Z.H. Zhang, W. Guo, K.C. Jie, M.I. Hashim, O.Š. Miljanić, D.E. Jiang, I. Popovs, S. Dai, Influence of fluorination on CO2 adsorption in materials derived from fluorinated covalent triazine framework precursors, J. Mater. Chem. A 7 (29) (2019) 17277-17282 [111] M.G. Mohamed, A.F.M. El-Mahdy, M.M.M. Ahmed, S.W. Kuo, Direct synthesis of microporous bicarbazole-based covalent triazine frameworks for high-performance energy storage and carbon dioxide uptake, Chempluschem 84 (11) (2019) 1767-1774 [112] Q.W. Deng, G.Q. Ren, Y.J. Li, L. Yang, S.L. Zhai, T. Yu, L. Sun, W.Q. Deng, A. Li, Y.H. Zhou, Hydrogen and CO2 storage in high surface area covalent triazine-based frameworks, Mater. Today Energy 18 (2020) 100506 [113] A. Mukhtar, S. Ullah, A. Inayat, S. Saqib, N.B. Mellon, M.A. Assiri, A.G. Al-Sehemi, M.B. Khan Niazi, Z. Jahan, M.A. Bustam, M. Ibrahim, Synthesis-structure-property relationship of nitrogen-doped porous covalent triazine frameworks for pre-combustion CO2 capture, Energy 216 (2021) 119230 [114] Li Z, Feng X, Zou Y, Zhang Y, Xia H, Liu X, Mu Y, A 2D azine-linked covalent organic framework for gas storage applications, Chem Commun (Camb) 50 (89) (2014) 13825-13828 [115] N. Huang, X. Chen, R. Krishna, D.L. Jiang, Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization, Angew. Chem. 127 (10) (2015) 3029-3033 [116] Z.P. Li, Y.F. Zhi, X. Feng, X.S. Ding, Y.C. Zou, X.M. Liu, Y. Mu, An azine-linked covalent organic framework:synthesis, characterization and efficient gas storage, Chem. Eur. J. 21 (34) (2015) 12079-12084 [117] Guan X, Ma Y, Li H, Yusran Y, Xue M, Fang Q, Yan Y, Valtchev V, Qiu S, Fast, ambient temperature and pressure ionothermal synthesis of three-dimensional covalent organic frameworks, J Am Chem Soc 140 (13) (2018) 4494-4498 [118] H. Zhu, W. Lin, Q. Li, Y. Hu, S. Guo, C. Wang, F. Yan, Bipyridinium-based ionic covalent triazine frameworks for CO2, SO2, and NO capture.[J]. ACS Appl. Mater. Inter 12 (7) (2020) 8614-8621 [119] G.B. Wang, N. Tahir, I. Onyshchenko, N. De Geyter, R. Morent, K. Leus, P. van der Voort, Novel hexaazatrinaphthalene-based covalent triazine frameworks as high-performance platforms for efficient carbon capture and storage, Microporous Mesoporous Mater. 290 (2019) 109650 [120] S. Mukherjee, M. Das, A. Manna, R. Krishna, S. Das, Newly designed 1, 2, 3-triazole functionalized covalent triazine frameworks with exceptionally high uptake capacity for both CO2 and H2, J. Mater. Chem. A 7 (3) (2019) 1055-1068 |
[1] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene[J]. 中国化学工程学报, 2023, 58(6): 69-75. |
[2] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas[J]. 中国化学工程学报, 2023, 57(5): 265-279. |
[3] | Shanshan Mao, Tao Shen, Qing Zhao, Tong Han, Fan Ding, Xin Jin, Manglai Gao. Selective capture of silver ions from aqueous solution by series of azole derivatives-functionalized silica nanosheets[J]. 中国化学工程学报, 2023, 57(5): 319-328. |
[4] | Xingzhong Li, Kunlin Yu, Zibo He, Bo Liu, Rongfei Zhou, Weihong Xing. Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO2 capture[J]. 中国化学工程学报, 2023, 56(4): 273-280. |
[5] | Tutuk Djoko Kusworo, Monica Yulfarida, Andri Cahyo Kumoro, Dani Puji Utomo. Purification of bioethanol fermentation broth using hydrophilic PVA crosslinked PVDF-GO/TiO2 membrane[J]. 中国化学工程学报, 2023, 55(3): 123-136. |
[6] | Zhongqi Ren, Jie Wang, Hewei Zhang, Fan Zhang, Shichao Tian, Zhiyong Zhou. Adsorption of rubidium ion from aqueous solution by surface ion imprinted materials[J]. 中国化学工程学报, 2023, 54(2): 1-10. |
[7] | Guolang Zhou, Xiaowei Li, Linlin Chen, Guiling Luo, Jun Gu, Jie Zhu, Jiangtao Yu, Jingzhou Yin, Yanhong Chao, Wenshuai Zhu. Construction of porous disc-like lithium manganate for rapid and selective electrochemical lithium extraction from brine[J]. 中国化学工程学报, 2023, 54(2): 316-322. |
[8] | Monique Juna L. Leite, Ingrid Ramalho Marques, Mariane Carolina Proner, Pedro H.H. Araújo, Alan Ambrosi, Marco Di Luccio. Catalytically active membranes for esterification: A review[J]. 中国化学工程学报, 2023, 53(1): 142-154. |
[9] | Najma Kamali, Jahan B. Ghasemi, Ghodsi Mohammadi Ziarani, Sahar Moradian, Alireza Badiei. Design, synthesis, and nanoengineered modification of spherical graphene surface by layered double hydroxide (LDH) for removal of As(III) from aqueous solutions[J]. 中国化学工程学报, 2023, 53(1): 374-380. |
[10] | Yuanyuan Jin, Siping Ding, Peiyun Li, Xuefen Wang. Coordination of thin-film nanofibrous composite dialysis membrane and reduced graphene oxide aerogel adsorbents for elimination of indoxyl sulfate[J]. 中国化学工程学报, 2022, 49(9): 111-121. |
[11] | Fengfeng Gao, Jinhua Luo, Xuefeng Zhang, Xiaogang Hao, Guoqing Guan, Zhong Liu, Jun Li, Qinglong Luo. Electrodeposited iodide ions imprinted polypyrrole@bismuth oxyiodide film for an electrochemically switched renewable extractor towards iodide ions[J]. 中国化学工程学报, 2022, 49(9): 161-169. |
[12] | Shanshan Xu, Qilei Zhang, Dongmei Bai, Linian Cai, Tao Lu, Shanjing Yao. Removal process and mechanism of hexavalent chromium by adsorption-coupled reduction with marine-derived Aspergillus niger mycelial pellets[J]. 中国化学工程学报, 2022, 49(9): 198-204. |
[13] | Zhong Ma, Guofu Liu, Hui Zhang, Yonggang Lu. Investigation of the redox performance of pyrite cinder calcined at different temperature in chemical looping combustion[J]. 中国化学工程学报, 2022, 48(8): 98-105. |
[14] | Wenjian Zhu, Xuhua Shen, Rui Ou, Manoj Murugesan, Aihua Yuan, Jianfeng Liu, Xiaocai Hu, Zhen Yang, Ming Shen, Fu Yang. Superhigh selective capture of volatile organic compounds exploiting cigarette butts-derived engineering carbonaceous adsorbent[J]. 中国化学工程学报, 2022, 46(6): 194-206. |
[15] | Jipeng Dong, Fei Wang, Guanghui Chen, Shougui Wang, Cailin Ji, Fei Gao. Fabrication of nickel oxide functionalized zeolite USY composite as a promising adsorbent for CO2 capture[J]. 中国化学工程学报, 2022, 46(6): 207-213. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||