[1] W.Z. Zheng, F. Chen, Q. Zeng, Z.J. Li, B. Yang, L.C. Lei, Q.H. Zhang, F. He, X.L. Wu, Y. Hou, A universal principle to accurately synthesize atomically dispersed metal-N4 sites for CO2 electroreduction, Nano Micro Lett. 12 (1) (2020) 1-12.10.1007/s40820-020-00443-z [2] Z.J. Li, Q. Zeng, Z.P. Ye, W.Z. Zheng, X.H. Sang, C.L. Dong, B. Yang, S. Pardiwala, J.G. Lu, L.C. Lei, G. Wu, Y. Hou, An integrated bioelectrochemical system coupled CO2 electroreduction device based on atomically dispersed iron electrocatalysts, Nano Energy 87 (2021) 106187.10.1016/j.nanoen.2021.106187 [3] W.Z. Zheng, Y. Wang, L. Shuai, X.Y. Wang, F. He, C.J. Lei, Z.J. Li, B. Yang, L.C. Lei, C. Yuan, M. Qiu, Y. Hou, X.L. Feng, Highly boosted reaction kinetics in carbon dioxide electroreduction by surface-introduced electronegative dopants, Adv. Funct. Mater. 31 (15) (2021) 2008146.10.1002/adfm.202008146 [4] J.J. Wang, L.Z. Wang, Y. Wang, D. Zhang, Q. Xiao, J.H. Huang, Y.N. Liu, Recent progress in porous organic polymers and their application for CO2 capture, Chin. J. Chem. Eng. 42 (2022) 91-103.10.1016/j.cjche.2021.08.028 [5] F.F. Li, F. Mocci, X.P. Zhang, X.Y. Ji, A. Laaksonen, Ionic liquids for CO2 electrochemical reduction, Chin. J. Chem. Eng. 31 (2021) 75-93.10.1016/j.cjche.2020.10.029 [6] S.H. Feng, W.Z. Zheng, J.K. Zhu, Z.J. Li, B. Yang, Z.H. Wen, J.G. Lu, L.C. Lei, S.B. Wang, Y. Hou, Porous metal-porphyrin triazine-based frameworks for efficient CO2 electroreduction, Appl. Catal. B Environ. 270 (2020) 118908.10.1016/j.apcatb.2020.118908 [7] X. Li, S. Hong, L.D. Hao, Z.Y. Sun, Cadmium-based metal-organic frameworks for high-performance electrochemical CO2 reduction to CO over wide potential range, Chin. J. Chem. Eng. (2021)10.1016/j.cjche.2021.10.013 [8] L.L. Han, S.J. Song, M.J. Liu, S.Y. Yao, Z.X. Liang, H. Cheng, Z.H. Ren, W. Liu, R.Q. Lin, G.C. Qi, X.J. Liu, Q. Wu, J. Luo, H.L. Xin, Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4, J. Am. Chem. Soc. 142 (29) (2020) 12563-12567.10.1021/jacs.9b12111 [9] Z.J. Li, A. Cao, Q. Zheng, Y.Y. Fu, T.T. Wang, K.T. Arul, J.L. Chen, B. Yang, N.M. Adli, L.C. Lei, C.L. Dong, J.P. Xiao, G. Wu, Y. Hou, Elucidation of the synergistic effect of dopants and vacancies on promoted selectivity for CO2 electroreduction to formate, Adv. Mater. 33 (2) (2021) 2005113.10.1002/adma.202005113 [10] J.Y. Chen, T.T. Wang, Z.J. Li, B. Yang, Q.H. Zhang, L.C. Lei, P.Y. Feng, Y. Hou, Recent progress and perspective of electrochemical CO2 reduction towards C2-C5 products over non-precious metal heterogeneous electrocatalysts, Nano Res. 14 (9) (2021) 3188-3207.10.1007/s12274-021-3335-x [11] T.T. Wang, Q.D. Zhao, Y.Y. Fu, C.J. Lei, B. Yang, Z.J. Li, L.C. Lei, G. Wu, Y. Hou, Single atom electrocatalysts:carbon-rich nonprecious metal single atom electrocatalysts for CO2 reduction and hydrogen evolution (small methods 10/2019), Small Methods 3 (10) (2019) 1970033.10.1002/smtd.201970033 [12] G.X. Wang, J.X. Chen, Y.C. Ding, P.W. Cai, L.C. Yi, Y. Li, C.Y. Tu, Y. Hou, Z.H. Wen, L.M. Dai, Electrocatalysis for CO2 conversion:from fundamentals to value-added products, Chem. Soc. Rev. 50 (8) (2021) 4993-5061.10.1039/d0cs00071j [13] L.P. Xiao, X. Liu, R.W. Zhou, T.Q. Zhang, R.S. Zhou, B. Ouyang, E.J. Kan, P.J. Cullen, K. Ostrikov, X. Tu, Facile synthesis of high-performance indium nanocrystals for selective CO2-to-formate electroreduction, Energy Convers. Manag. 231 (2021) 113847.10.1016/j.enconman.2021.113847 [14] N. Zouaoui, B.D. Ossonon, M.Y. Fan, D. Mayilukila, S. Garbarino, G. de Silveira, G.A. Botton, D. Guay, A.C. Tavares, Electroreduction of CO2 to formate on amine modified Pb electrodes, J. Mater. Chem. A 7 (18) (2019) 11272-11281.10.1039/c8ta09637f [15] F.C. Wei, T.T. Wang, X.L. Jiang, Y. Ai, A.Y. Cui, J. Cui, J.W. Fu, J.G. Cheng, L.C. Lei, Y. Hou, S.H. Liu, Controllably engineering mesoporous surface and dimensionality of SnO 2 toward high-performance CO2 electroreduction, Adv. Funct. Mater. 30 (39) (2020) 2002092.10.1002/adfm.202002092 [16] Q. Zhang, X.L. Shao, J. Yi, Y.Y. Liu, J.J. Zhang, An experimental study of electroreduction of CO2 to HCOOH on SnO2/C in presence of alkali metal cations (Li+, Na+, K+, Rb+ and Cs+) and anions (HCO3-, Cl-, Br- and I-), Chin. J. Chem. Eng. 28 (10) (2020) 2549-2554.10.1016/j.cjche.2020.04.015 [17] Y. Huang, X.N. Mao, G.T. Yuan, D. Zhang, B.B. Pan, J. Deng, Y.R. Shi, N. Han, C.R. Li, L. Zhang, L. Wang, L. He, Y.Y. Li, Y.G. Li, Size-dependent selectivity of electrochemical CO2 reduction on converted In2 O3 nanocrystals, Angew. Chem. Int. Ed Engl. 60 (29) (2021) 15844-15848.https://pubmed.ncbi.nlm.nih.gov/33973698/ [18] Y. Zhang, F.W. Li, X.L. Zhang, T. Williams, C.D. Easton, A.M. Bond, J. Zhang, Electrochemical reduction of CO2on defect-rich Bi derived from Bi2S3 with enhanced formate selectivity, J. Mater. Chem. A 6 (11) (2018) 4714-4720.10.1039/c8ta00023a [19] H. Xie, T. Zhang, R.K. Xie, Z.F. Hou, X.C. Ji, Y.Y. Pang, S.Q. Chen, M.M. Titirici, H.M. Weng, G.L. Chai, Facet engineering to regulate surface states of topological crystalline insulator bismuth rhombic dodecahedrons for highly energy efficient electrochemical CO2 reduction, Adv. Mater. 33 (31) (2021) 2008373.10.1002/adma.202008373 [20] W.J. Zhang, Y. Hu, L.B. Ma, G.Y. Zhu, P.Y. Zhao, X.L. Xue, R.P. Chen, S.Y. Yang, J. Ma, J. Liu, Z. Jin, Liquid-phase exfoliated ultrathin Bi nanosheets:Uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure, Nano Energy 53 (2018) 808-816.10.1016/j.nanoen.2018.09.053 [21] C.C. Miao, G.Q. Yuan, Morphology-controlled Bi2O3 nanoparticles as catalysts for selective electrochemical reduction of CO2 to formate, ChemElectroChem 5 (23) (2018) 3741-3747.10.1002/celc.201801036 [22] T.T. Wang, X.H. Sang, W.Z. Zheng, B. Yang, S.Y. Yao, C.J. Lei, Z.J. Li, Q.G. He, J.G. Lu, L.C. Lei, L.M. Dai, Y. Hou, Gas diffusion strategy for inserting atomic iron sites into graphitized carbon supports for unusually high-efficient CO2 electroreduction and high-performance Zn-CO 2 batteries, Adv. Mater. 32 (29) (2020) 2002430.10.1002/adma.202002430 [23] C.W. Lee, J.S. Hong, K.D. Yang, K. Jin, J.H. Lee, H.Y. Ahn, H. Seo, N.E. Sung, K.T. Nam, Selective electrochemical production of formate from carbon dioxide with bismuth-based catalysts in an aqueous electrolyte, ACS Catal. 8 (2) (2018) 931-937.10.1021/acscatal.7b03242 [24] S.Q. Liu, E. Shahini, M.R. Gao, L. Gong, P.F. Sui, T. Tang, H.B. Zeng, J.L. Luo, Bi2O3 nanosheets grown on carbon nanofiber with inherent hydrophobicity for high-performance CO2 electroreduction in a wide potential window, ACS Nano 15 (11) (2021) 17757-17768.10.1021/acsnano.1c05737 [25] X. Wang, X. Sang, C.-L. Dong, S. Yao, L. Shuai, J. Lu, B. Yang, Z. Li, L. Lei, M. Qiu, L. Dai, Y. Hou, Proton capture strategy for enhancing electrochemical CO2 reduction on atomically dispersed metal-nitrogen active sites, Angew. Chem. Int. Ed. 60 (21) (2021) 11959-11965 [26] S.Q. Liu, M.R. Gao, R.F. Feng, L. Gong, H.B. Zeng, J.L. Luo, Electronic delocalization of bismuth oxide induced by sulfur doping for efficient CO2 electroreduction to formate, ACS Catal. 11 (12) (2021) 7604-7612.10.1021/acscatal.1c01899 [27] D. Lv, T.C. Zhang, D.Y. Wang, J. Li, L.J. Wang, One-pot synthesis of nitrogen-doped carbon aerogels derived from sodium lignosulfonate embedded in carrageenan for supercapacitor electrode materials, Ind. Crops Prod. 170 (2021) 113750.10.1016/j.indcrop.2021.113750 [28] K.K. Bera, R. Majumdar, M. Chakraborty, S.K. Bhattacharya, Phase control synthesis of α, β and α/β Bi2O3 hetero-junction with enhanced and synergistic photocatalytic activity on degradation of toxic dye, Rhodamine-B under natural sunlight, J. Hazard. Mater. 352 (2018) 182-191.10.1016/j.jhazmat.2018.03.029 [29] S. Frindy, M. Sillanpää, Synthesis and application of novel α-Fe2O3/graphene for visible-light enhanced photocatalytic degradation of RhB, Mater. Des. 188 (2020) 108461.10.1016/j.matdes.2019.108461 [30] Y. Sang, X. Cao, G.D. Dai, L.X. Wang, Y. Peng, B.Y. Geng, Facile one-pot synthesis of novel hierarchical Bi2 O3/Bi 2 S3 nanoflower photocatalyst with intrinsic p-n junction for efficient photocatalytic removals of RhB and Cr(VI), J. Hazard. Mater. 381 (2020) 120942.https://pubmed.ncbi.nlm.nih.gov/31416040/ [31] T. Tran-Phu, R. Daiyan, Z. Fusco, Z.P. Ma, R. Amal, A. Tricoli, Nanostructured β-Bi2O3 fractals on carbon fibers for highly selective CO2 electroreduction to formate, Adv. Funct. Mater. 30 (3) (2020) 1906478.10.1002/adfm.201906478[32] H. Kim, D. Kim, Y. Lee, D. Byun, H.S. Kim, W. Choi, Synthesis of Bi2S3/C yolk-shell composite based on sulfur impregnation for efficient sodium storage, Chem. Eng. J. 383 (2020) 123094.10.1016/j.cej.2019.123094 [32] H. Kim, D. Kim, Y. Lee, D. Byun, H.S. Kim, W. Choi, Synthesis of Bi2S3/C yolk-shell composite based on sulfur impregnation for efficient sodium storage, Chem. Eng. J. 383 (2020) 123094.10.1016/j.cej.2019.123094 [33] S. Fan, H.Y. Cheng, M.M. Feng, X.M. Wu, Z.H. Fan, D.W. Pan, G.H. He, Catalytic hydrogenation performance of ZIF-8 carbide for electrochemical reduction of carbon dioxide, Chin. J. Chem. Eng. 39 (2021) 144-153.10.1016/j.cjche.2021.05.032 [34] J.J. Sun, W.Z. Zheng, S.L. Lyu, F. He, B. Yang, Z.J. Li, L.C. Lei, Y. Hou, Bi/Bi2O3 nanoparticles supported on N-doped reduced graphene oxide for highly efficient CO2 electroreduction to formate, Chin. Chem. Lett. 31 (6) (2020) 1415-1421.10.1016/j.cclet.2020.04.031 [35] W.S. Dai, L. Lin, Y.M. Li, Z. Chen, F. Liu, F. Li, L.J. Chen, A novel Ni-S-Mn electrode with hierarchical morphology fabricated by gradient electrodeposition for hydrogen evolution reaction, Appl. Surf. Sci. 514 (2020) 145944.10.1016/j.apsusc.2020.145944 [36] P.L. Deng, F. Yang, Z.T. Wang, S.H. Chen, Y.Z. Zhou, S. Zaman, B.Y. Xia, Metal-organic framework-derived carbon nanorods encapsulating bismuth oxides for rapid and selective CO2 electroreduction to formate, Angew. Chem. Int. Ed. 59 (27) (2020) 10807-10813.10.1002/anie.202000657 [37] X.Y. Wang, Y. Wang, X.H. Sang, W.Z. Zheng, S.H. Zhang, L. Shuai, B. Yang, Z.J. Li, J.M. Chen, L.C. Lei, N.M. Adli, M.K.H. Leung, M. Qiu, G. Wu, Y. Hou, Dynamic activation of adsorbed intermediates via axial traction for the promoted electrochemical CO2 reduction, Angew. Chem. Int. Ed. 60 (8) (2021) 4192-4198.10.1002/anie.202013427 [38] J. Gu, C.S. Hsu, L.C. Bai, H.M. Chen, X.L. Hu, Atomically dispersed Fe3 + sites catalyze efficient CO2 electroreduction to CO, Science 364 (6445) (2019) 1091-1094.10.1126/science.aaw7515 [39] Y.K. Zhang, X.Y. Wang, S.X. Zheng, B. Yang, Z.J. Li, J.G. Lu, Q.H. Zhang, N.M. Adli, L.C. Lei, G. Wu, Y. Hou, Hierarchical cross-linked carbon aerogels with transition metal-nitrogen sites for highly efficient industrial-level CO2 electroreduction, Adv. Funct. Mater. 31 (45) (2021) 2104377.10.1002/adfm.202104377 [40] Z.X. Wu, H.B. Wu, W.Q. Cai, Z.H. Wen, B.H. Jia, L. Wang, W. Jin, T.Y. Ma, Engineering bismuth-tin interface in bimetallic aerogel with a 3D porous structure for highly selective electrocatalytic CO2 reduction to HCOOH, Angew. Chem. Int. Ed Engl. 60 (22) (2021) 12554-12559.https://pubmed.ncbi.nlm.nih.gov/33720479/ [41] Z.L. Jiang, T. Wang, J.J. Pei, H.S. Shang, D.N. Zhou, H.J. Li, J.C. Dong, Y. Wang, R. Cao, Z.B. Zhuang, W.X. Chen, D.S. Wang, J.T. Zhang, Y.D. Li, Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency, Energy Environ. Sci. 13 (9) (2020) 2856-2863.10.1039/d0ee01486a |