中国化学工程学报 ›› 2022, Vol. 43 ›› Issue (3): 124-134.DOI: 10.1016/j.cjche.2022.01.005
Di Gao1, Yibo Zhi1, Liyuan Cao1, Liang Zhao1, Jinsen Gao1, Chunming Xu1, Mingzhi Ma2, Pengfei Hao2
收稿日期:
2021-09-10
修回日期:
2021-12-24
出版日期:
2022-03-28
发布日期:
2022-04-28
通讯作者:
Liang Zhao,E-mail:liangzhao@cup.edu.cn
基金资助:
Di Gao1, Yibo Zhi1, Liyuan Cao1, Liang Zhao1, Jinsen Gao1, Chunming Xu1, Mingzhi Ma2, Pengfei Hao2
Received:
2021-09-10
Revised:
2021-12-24
Online:
2022-03-28
Published:
2022-04-28
Contact:
Liang Zhao,E-mail:liangzhao@cup.edu.cn
Supported by:
摘要: Rational design of Zn-containing HZSM-5 zeolite (Zn/HZSM-5) with high reactivity and excellent aromatization performance for olefin aromatization is crucially desired. We develop a new and uncomplicated method to synthesize Zn/HZSM-5 (IMX/Z5) with superior aromatization performance in the paper. Compared to incipient wetness impregnation (IMP/Z5) and mechanical mixing (MIX/Z5), the as-prepared IMX/Z5 presents a higher amount of surface ZnOH+ species (2.87%) while keeping identical bulk zinc content. As a result, more surface ZnOH+ favor both the aromatization of 1-hexene and cyclohexane dehydrogenation. For the two olefin aromatization pathways (hydrogen transfer and dehydrogenation), it is the first time found both the hydrogen transfer ability and the dehydrogenation ability increase linearly with the amount of surface ZnOH+ species while keeping identical bulk zinc content. We believe that the linear relationships are essential to design next generation olefin aromatization catalysts.
Di Gao, Yibo Zhi, Liyuan Cao, Liang Zhao, Jinsen Gao, Chunming Xu, Mingzhi Ma, Pengfei Hao. Influence of zinc state on the catalyst properties of Zn/HZSM-5 zeolite in 1-hexene aromatization and cyclohexane dehydrogenation[J]. 中国化学工程学报, 2022, 43(3): 124-134.
Di Gao, Yibo Zhi, Liyuan Cao, Liang Zhao, Jinsen Gao, Chunming Xu, Mingzhi Ma, Pengfei Hao. Influence of zinc state on the catalyst properties of Zn/HZSM-5 zeolite in 1-hexene aromatization and cyclohexane dehydrogenation[J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 124-134.
[1] F. Mohammadparast, R. Halladj, S. Askari, The crystal size effect of nano-sized ZSM-5 in the catalytic performance of petrochemical processes:a review, Chem. Eng. Commun. 202 (4) (2015) 542-556.http://dx.doi.org/10.1080/00986445.2014.952815 [2] S.M. Alipour, Recent advances in naphtha catalytic cracking by nano ZSM-5:a review, Chin. J. Catal. 37 (5) (2016) 671-680.http://dx.doi.org/10.1016/S1872-2067(15)61091-9 [3] M.Y. Gim, C. Song, T.H. Kim, J.H. Song, D.H. Kim, K.Y. Lee, I.K. Song, BTX production by coaromatization of methane and propane over gallium oxide supported on mesoporous HZSM-5, Mol. Catal. 439 (2017) 134-142.http://dx.doi.org/10.1016/j.mcat.2017.07.001 [4] X.W. Xu, E.C. Jiang, Z.Y. Li, Y. Sun, BTX from anisole by hydrodeoxygenation and transalkylation at ambient pressure with zeolite catalysts, Fuel 221 (2018) 440-446.http://dx.doi.org/10.1016/j.fuel.2018.01.033 [5] L. Han, O.Y. Ying, E.H. Xing, Y.B. Luo, Z.J. Da, Enhancing hydrothermal stability of framework Al in ZSM-5:from the view on the transformation between P and Al species by solid-state NMR spectroscopy, Chin. J. Chem. Eng. 28 (12) (2020) 3052-3060.http://dx.doi.org/10.1016/j.cjche.2020.07.039 [6] S.A. Tabak, F.J. Krambeck, W.E. Garwood, Conversion of propylene and butylene over ZSM-5 catalyst, AIChE J. 32 (9) (1986) 1526-1531.https://doi.org/10.1002/aic.690320913 [7] M. Bjørgen, S. Svelle, F. Joensen, J. Nerlov, S. Kolboe, F. Bonino, L. Palumbo, S. Bordiga, U. Olsbye, Conversion of methanol to hydrocarbons over zeolite H-ZSM-5:on the origin of the olefinic species, J. Catal. 249 (2) (2007) 195-207.http://dx.doi.org/10.1016/j.jcat.2007.04.006 [8] U. Olsbye, S. Svelle, M. Bjørgen, P. Beato, T.V.W. Janssens, F. Joensen, S. Bordiga, K.P. Lillerud, Conversion of methanol to hydrocarbons:how zeolite cavity and pore size controls product selectivity, Angew. Chem. Int. Ed. 51 (24) (2012) 5810-5831.https://doi.org/10.1002/anie.201103657 [9] S. Ilias, A. Bhan, Mechanism of the catalytic conversion of methanol to hydrocarbons, ACS Catal. 3 (1) (2013) 18-31.https://doi.org/10.1021/cs3006583 [10] Y.Q. Song, X.X. Zhu, S.J. Xie, Q.X. Wang, L.Y. Xu, The effect of acidity on olefin aromatization over potassium modified ZSM-5 catalysts, Catal. Lett. 97 (1/2) (2004) 31-36.https://doi.org/10.1023/b:catl.0000034281.58853.76 [11] D.B. Lukyanov, N.S. Gnep, M.R. Guisnet, Kinetic modeling of ethene and propene aromatization over HZSM-5 and GaHZSM-5, Ind. Eng. Chem. Res. 33 (2) (1994) 223-234.http://dx.doi.org/10.1021/ie00026a008 [12] Z.N. Lashchinskaya, A.A. Gabrienko, S.S. Arzumanov, A.A. Kolganov, A.V. Toktarev, D. Freude, J. Haase, A.G. Stepanov, Which species, Zn2+ cations or ZnO clusters, are more efficient for olefin aromatization? 13C solid-state NMR investigation of n-but-1-ene transformation on Zn-modified zeolite, ACS Catal. 10 (23) (2020) 14224-14233.https://doi.org/10.1021/acscatal.0c03647 [13] P. He, J.S. Jarvis, S.J. Meng, Q.Y. Li, G.M. Bernard, L.J. Liu, X.H. Mao, Z. Jiang, H.B. Zeng, V.K. Michaelis, H. Song, Co-aromatization of methane with propane over Zn/HZSM-5:the methane reaction pathway and the effect of Zn distribution, Appl. Catal. B Environ. 250 (2019) 99-111.http://dx.doi.org/10.1016/j.apcatb.2019.03.011 [14] M. Raad, A. Astafan, S. Hamieh, J. Toufaily, T. Hamieh, J.D. Comparot, C. Canaff, T.J. Daou, J. Patarin, L. Pinard, Catalytic properties of Ga-containing MFI-type zeolite in cyclohexane dehydrogenation and propane aromatization, J. Catal. 365 (2018) 376-390.http://dx.doi.org/10.1016/j.jcat.2018.06.029 [15] J.H. Gao, K.M. Ji, H. Zhou, J.Y. Xun, Z.H. Liu, K. Zhang, P. Liu, Synthesis and characterization of BZSM-5 and its catalytic performance in the methanol to hydrocarbons reaction, Chin. J. Chem. Eng. 35 (2021) 196-203.http://dx.doi.org/10.1016/j.cjche.2020.09.008 [16] I. Pinilla-Herrero, E. Borfecchia, J. Holzinger, U.V. Mentzel, F. Joensen, K.A. Lomachenko, S. Bordiga, C. Lamberti, G. Berlier, U. Olsbye, S. Svelle, J. Skibsted, P. Beato, High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics, J. Catal. 362 (2018) 146-163.http://dx.doi.org/10.1016/j.jcat.2018.03.032 [17] X.J. Niu, J. Gao, Q. Miao, M. Dong, G.F. Wang, W.B. Fan, Z.F. Qin, J.G. Wang, Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics, Microporous Mesoporous Mater. 197 (2014) 252-261.http://dx.doi.org/10.1016/j.micromeso.2014.06.027 [18] S. Triwahyono, A.A. Jalil, R.R. Mukti, M. Musthofa, N.A.M. Razali, M.A.A. Aziz, Hydrogen spillover behavior of Zn/HZSM-5 showing catalytically active protonic acid sites in the isomerization of n-pentane, Appl. Catal. A Gen. 407 (2011) 91-99.http://dx.doi.org/10.1016/j.fuproc.2016.12.006 [19] A.A. Gabrienko, S.S. Arzumanov, A.V. Toktarev, I.G. Danilova, I.P. Prosvirin, V.V. Kriventsov, V.I. Zaikovskii, D. Freude, A.G. Stepanov, Different efficiency of Zn2+ and ZnO species for methane activation on Zn-modified zeolite, ACS Catal. 7 (3) (2017) 1818-1830.https://doi.org/10.1021/acscatal.6b03036 [20] L. Lin, J.X. Liu, X.T. Zhang, J.L. Wang, C.Y. Liu, G. Xiong, H.C. Guo, Effect of zeolitic hydroxyl nests on the acidity and propane aromatization performance of zinc nitrate impregnation-modified HZSM-5 zeolite, Ind. Eng. Chem. Res. 59 (37) (2020) 16146-16160.https://doi.org/10.1021/acs.iecr.0c02596 [21] P.T. Huyen, V.D. Trinh, M.T. Portilla, C. Martínez, Influence of boron promotion on the physico-chemical properties and catalytic behavior of Zn/ZSM-5 in the aromatization of n-hexane, Catal. Today 366 (2021) 97-102.http://dx.doi.org/10.1016/j.cattod.2020.03.030 [22] X.J. Niu, J. Gao, K. Wang, Q. Miao, M. Dong, G.F. Wang, W.B. Fan, Z.F. Qin, J.G. Wang, Influence of crystal size on the catalytic performance of H-ZSM-5 and Zn/H-ZSM-5 in the conversion of methanol to aromatics, Fuel Process. Technol. 157 (2017) 99-107.http://dx.doi.org/10.1016/j.fuproc.2016.12.006 [23] J.A. Biscardi, G.D. Meitzner, E. Iglesia, Structure and density of active Zn species in Zn/H-ZSM5 propane aromatization catalysts, J. Catal. 179 (1) (1998) 192-202.http://dx.doi.org/10.1006/jcat.1998.2177 [24] H. Berndt, G. Lietz, J. Völter, Zinc promoted H-ZSM-5 catalysts for conversion of propane to aromatics II. Nature of the active sites and their activation, Appl. Catal. A Gen. 146 (2) (1996) 365-379.http://dx.doi.org/10.1016/S0926-860X(96)00124-X [25] A.L. Yakovlev, A.A. Shubin, G.M. Zhidomirov, R.A. van Santen, DFT study of oxygen-bridged Zn2+ ion pairs in Zn/ZSM-5 zeolites, Catal. Lett. 70 (2000) 175-181 [26] A. Bonnin, J.D. Comparot, Y. Pouilloux, V. Coupard, D. Uzio, L. Pinard, Mechanisms of aromatization of dilute ethylene on HZSM-5 and on Zn/HZSM-5 catalysts, Appl. Catal. A Gen. 611 (2021) 117974.http://dx.doi.org/10.1016/j.apcata.2020.117974 [27] L. Lin, X.T. Zhang, N. He, J.X. Liu, Q. Xin, H.C. Guo, Operando dual beam FTIR study of hydroxyl groups and Zn species over defective HZSM-5 zeolite supported zinc catalysts, Catalysts 9 (1) (2019) 100.https://doi.org/10.3390/catal9010100 [28] H.Y. Long, F.Y. Jin, G. Xiong, X.S. Wang, Effect of lanthanum and phosphorus on the aromatization activity of Zn/ZSM-5 in FCC gasoline upgrading, Microporous Mesoporous Mater. 198 (2014) 29-34.http://dx.doi.org/10.1016/j.micromeso.2014.07.016 [29] S.S. Arzumanov, A.A. Gabrienko, A.V. Toktarev, Z.N. Lashchinskaya, D. Freude, J. Haase, A.G. Stepanov, Propane transformation on Zn-modified zeolite. effect of the nature of Zn species on alkane aromatization and hydrogenolysis, J. Phys. Chem. C 123 (50) (2019) 30473-30485.https://doi.org/10.1021/acs.jpcc.9b09718 [30] Y.H. Zhang, M.M. Liu, L. Zhao, S.X. Liu, J.S. Gao, C.M. Xu, M.Z. Ma, Q.F. Meng, Modeling, simulation, and optimization for producing ultra-low sulfur and high-octane number gasoline by separation and conversion of fluid catalytic cracking naphtha, Fuel 299 (2021) 120740.http://dx.doi.org/10.1016/j.fuel.2021.120740 [31] T.J. Fu, J. Shao, Z. Li, Catalytic synergy between the low Si/Al ratio Zn/ZSM-5 and high Si/Al ratio HZSM-5 for high-performance methanol conversion to aromatics, Appl. Catal. B Environ. 291 (2021) 120098.http://dx.doi.org/10.1016/j.apcatb.2021.120098 [32] A. Bonnin, Y. Pouilloux, V. Coupard, D. Uzio, L. Pinard, Deactivation mechanism and regeneration study of Zn/HZSM-5 catalyst in ethylene transformation, Appl. Catal. A Gen. 611 (2021) 117976.http://dx.doi.org/10.1016/j.apcata.2020.117976 [33] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (9-10) (2015) 1051-1069.https://doi.org/10.1515/pac-2014-1117 [34] P. He, A.G. Wang, S.J. Meng, G.M. Bernard, L.J. Liu, V.K. Michaelis, H. Song, Impact of Al sites on the methane co-aromatization with alkanes over Zn/HZSM-5, Catal. Today 323 (2019) 94-104.http://dx.doi.org/10.1016/j.cattod.2018.05.051 [35] T. Pan, Z.J. Wu, K.Y. Zhou, In situ incorporation of Zn into hierarchical ZSM-5 zeolites for olefin hydroisomerization, Ind. Eng. Chem. Res. 59 (27) (2020) 12371-12380.https://doi.org/10.1021/acs.iecr.0c01506 [36] E. Selli, L. Forni, Comparison between the surface acidity of solid catalysts determined by TPD and FTIR analysis of pre-adsorbed pyridine, Microporous Mesoporous Mater. 31 (1-2) (1999) 129-140.http://dx.doi.org/10.1016/S1387-1811(99)00063-3 [37] C.A. Emeis, Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts, J. Catal. 141 (2) (1993) 347-354.http://dx.doi.org/10.1006/jcat.1993.1145 [38] X.F. Su, K. Zhang, Y. Snatenkova, Z. Matieva, X.F. Bai, N. Kolesnichenko, W. Wu, High-efficiency nano[Zn, Al]ZSM-5 bifunctional catalysts for dimethyl ether conversion to isoparaffin-rich gasoline, Fuel Process. Technol. 198 (2020) 106242.http://dx.doi.org/10.1016/j.fuproc.2019.106242 [39] X.F. Su, G.L. Wang, X.F. Bai, W. Wu, L.F. Xiao, Y.J. Fang, J.W. Zhang, Synthesis of nanosized HZSM-5 zeolites isomorphously substituted by gallium and their catalytic performance in the aromatization, Chem. Eng. J. 293 (2016) 365-375.http://dx.doi.org/10.1016/j.cej.2016.02.088 [40] M.D. Xin, E.H. Xing, X.Z. Gao, Y.R. Wang, Y. Ouyang, G.T. Xu, Y.B. Luo, X.T. Shu, Ga substitution during modification of ZSM-5 and its influences on catalytic aromatization performance, Ind. Eng. Chem. Res. 58 (17) (2019) 6970-6981.https://doi.org/10.1021/acs.iecr.9b00295 [41] N. Amin, D.D. Anggoro, Characterization and Activity of Cr, Cu and Ga Modified ZSM-5 for Direct Conversion of Methane to Liquid Hydrocarbons, J. Nat. Gas Chem. 12 (2003) 123-119 [42] J.H. Gao, L.D. Zhang, J.X. Hu, W.H. Li, J.G. Wang, Effect of zinc salt on the synthesis of ZSM-5 for alkylation of benzene with ethanol, Catal. Commun. 10 (12) (2009) 1615-1619.http://dx.doi.org/10.1016/j.catcom.2009.04.029 [43] Y.W. Zhang, Y.M. Zhou, L. Huang, S.J. Zhou, X.L. Sheng, Q.L. Wang, C. Zhang, Structure and catalytic properties of the Zn-modified ZSM-5 supported platinum catalyst for propane dehydrogenation, Chem. Eng. J. 270 (2015) 352-361.http://dx.doi.org/10.1016/j.cej.2015.01.008 [44] L.Q. Meng, X.C. Zhu, W. Wannapakdee, R. Pestman, M.G. Goesten, L. Gao, A.J.F. van Hoof, E.J.M. Hensen, A dual-templating synthesis strategy to hierarchical ZSM-5 zeolites as efficient catalysts for the methanol-to-hydrocarbons reaction, J. Catal. 361 (2018) 135-142.http://dx.doi.org/10.1016/j.jcat.2018.02.032 [45] K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem. 57 (1985) 603-619 [46] Y.M. Ni, A.M. Sun, X.L. Wu, G.L. Hai, J.L. Hu, T. Li, G.X. Li, The preparation of nano-sized H[Zn, Al]ZSM-5 zeolite and its application in the aromatization of methanol, Microporous Mesoporous Mater. 143 (2-3) (2011) 435-442.http://dx.doi.org/10.1016/j.micromeso.2011.03.029 [47] X.L. Zhu, J.Y. Zhang, M. Cheng, G.W. Wang, M.X. Yu, C.Y. Li, Methanol aromatization over Mg-P-modified[Zn, Al]ZSM-5 zeolites for efficient coproduction of Para-xylene and light olefins, Ind. Eng. Chem. Res. 58 (42) (2019) 19446-19455.https://doi.org/10.1021/acs.iecr.9b03743 [48] J.G. Zhang, W.Z. Qian, C.Y. Kong, F. Wei, Increasing Para-xylene selectivity in making aromatics from methanol with a surface-modified Zn/P/ZSM-5 catalyst, ACS Catal. 5 (5) (2015) 2982-2988.http://dx.doi.org/10.1021/acscatal.5b00192 [49] F. Lónyi, J. Valyon, On the interpretation of the NH3-TPD patterns of H-ZSM-5 and H-mordenite, Microporous Mesoporous Mater. 47 (2-3) (2001) 293-301.http://dx.doi.org/10.1016/S1387-1811(01)00389-4 [50] D.H. Pan, X.H. Song, X.H. Yang, L.J. Gao, R.P. Wei, J. Zhang, G.M. Xiao, Efficient and selective conversion of methanol to Para-xylene over stable H[Zn, Al]ZSM-5/SiO2 composite catalyst, Appl. Catal. A Gen. 557 (2018) 15-24.http://dx.doi.org/10.1016/j.apcata.2018.03.006 [51] B. Xu, M.H. Tan, X.M. Wu, H.L. Geng, F.E. Song, Q.X. Ma, C.H. Luan, G.H. Yang, Y.S. Tan, Effects of silylation on Ga/HZSM-5 for improved propane dehydroaromatization, Fuel 283 (2021) 118889.http://dx.doi.org/10.1016/j.fuel.2020.118889 [52] L.G. Wang, S.Y. Sang, S.H. Meng, Y. Zhang, Y. Qi, Z.M. Liu, Direct synthesis of Zn-ZSM-5 with novel morphology, Mater. Lett. 61 (8-9) (2007) 1675-1678.http://dx.doi.org/10.1016/j.matlet.2006.07.097 [53] J. Chen, Z.C. Feng, P.L. Ying, C. Li, ZnO clusters encapsulated inside micropores of zeolites studied by UV Raman and laser-induced luminescence spectroscopies, J. Phys. Chem. B 108 (34) (2004) 12669-12676.http://dx.doi.org/10.1021/jp048746x [54] C. Song, X.J. Li, X.X. Zhu, S.L. Liu, F.C. Chen, F. Liu, L.Y. Xu, Influence of the state of Zn species over Zn-ZSM-5/ZSM-11 on the coupling effects of cofeeding n-butane with methanol, Appl. Catal. A Gen. 519 (2016) 48-55.http://dx.doi.org/10.1016/j.apcata.2016.03.023 [55] V.T.T. Ha, A. Sarıoğlan, A. Erdem-Şenatalar, Y.B. Taârit, An EPR and NMR study on Mo/HZSM-5 catalysts for the aromatization of methane:investigation of the location of the pentavalent molybdenum, J. Mol. Catal. A Chem. 378 (2013) 279-284.http://dx.doi.org/10.1016/j.molcata.2013.06.020 [56] F. Mudu, U. Olsbye, B. Arstad, S. Diplas, Y.J. Li, H. Fjellvåg, Aluminium substituted lanthanum based perovskite type oxides, non-stoichiometry and performance in methane partial oxidation by framework oxygen, Appl. Catal. A Gen. 523 (2016) 171-181.http://dx.doi.org/10.1016/j.apcata.2016.05.013 [57] Y.M. Jia, J.W. Wang, K. Zhang, S.B. Liu, G.L. Chen, Y.F. Yang, C.M. Ding, P. Liu, Catalytic conversion of methanol to aromatics over nano-sized HZSM-5 zeolite modified by ZnSiF6·6H2O, Catal. Sci. Technol. 7 (8) (2017) 1776-1791.https://doi.org/10.1039/c7cy00143f [58] J. Chen, L. Chang, H.M. Kang, F.X. Ding, Characterization of Zn promoter in ZnO/HZSM-5 catalyst for propane aromatization, Chin. J. Chem. 22 (2001) 229-232 [59] L.W. Zhang, H.K. Zhang, Z.Q. Chen, Q. Ning, S.Y. Liu, J. Ren, X.D. Wen, Y.W. Li, Insight into the impact of Al distribution on the catalytic performance of 1-octene aromatization over ZSM-5 zeolite, Catal. Sci. Technol. 9 (24) (2019) 7034-7044.https://doi.org/10.1039/c9cy01672d [60] Y.N. Li, S.L. Liu, Z.K. Zhang, S.J. Xie, X.X. Zhu, L.Y. Xu, Aromatization and isomerization of 1-hexene over alkali-treated HZSM-5 zeolites:improved reaction stability, Appl. Catal. A Gen. 338 (1-2) (2008) 100-113.http://dx.doi.org/10.1016/j.apcata.2007.12.026 [61] Y. Fan, J.Z. Yin, G. Shi, H.Y. Liu, X.J. Bao, Mechanistic pathways for olefin hydroisomerization and aromatization in fluid catalytic cracking gasoline hydro-upgrading, Energy Fuels 23 (6) (2009) 3016-3023.http://dx.doi.org/10.1021/ef900030h [62] Y.N. Li, S.L. Liu, S.J. Xie, L.Y. Xu, Promoted metal utilization capacity of alkali-treated zeolite:preparation of Zn/ZSM-5 and its application in 1-hexene aromatization, Appl. Catal. A Gen. 360 (1) (2009) 8-16.http://dx.doi.org/10.1016/j.apcata.2009.02.039 [63] H. Kitagawa, Y. Sendoda, Y. Ono, Transformation of propane into aromatic hydrocarbons over ZSM-5 zeolites, J. Catal. 101 (1) (1986) 12-18.http://dx.doi.org/10.1016/0021-9517(86)90223-X [64] M. Guisnet, N.S. Gnep, F. Alario, Aromatization of short chain alkanes on zeolite catalysts, Appl. Catal. A Gen. 89 (1) (1992) 1-30 |
[1] | Baoyu Liu, Feng Xiong, Jianwen Zhang, Manna Wang, Yi Huang, Yanxiong Fang, Jinxiang Dong. Enhanced ortho-selective t–butylation of phenol over sulfonic acid functionalized mesopore MTW zeolites[J]. 中国化学工程学报, 2023, 60(8): 1-7. |
[2] | Jinlong Liu, Chenye Wang, Xingrui Wang, Chen Zhao, Huiquan Li, Ganyu Zhu, Jianbo Zhang. Reconstruction and recovery of anatase TiO2 from spent selective catalytic reduction catalyst by NaOH hydrothermal method[J]. 中国化学工程学报, 2023, 60(8): 53-60. |
[3] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction[J]. 中国化学工程学报, 2023, 60(8): 165-172. |
[4] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol[J]. 中国化学工程学报, 2023, 60(8): 186-193. |
[5] | Yuehua Liu, Lili Chen, Shoujun Liu, Song Yang, Ju Shangguan. Role of iron-based catalysts in reducing NOx emissions from coal combustion[J]. 中国化学工程学报, 2023, 59(7): 1-8. |
[6] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination[J]. 中国化学工程学报, 2023, 59(7): 193-199. |
[7] | Tingjun Fu, Ran Wang, Kun Ren, Liangliang Zhang, Zhong Li. Intensified shape selectivity and alkylation reaction for the two-step conversion of methanol aromatization to p-xylene[J]. 中国化学工程学报, 2023, 59(7): 240-250. |
[8] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene[J]. 中国化学工程学报, 2023, 58(6): 69-75. |
[9] | Haodi Tan, Minjiao Yang, Yingquan Chen, Xu Chen, Francesco Fantozzi, Pietro Bartocci, Roman Tschentscher, Federica Barontini, Haiping Yang, Hanping Chen. Preparation of aromatic hydrocarbons from catalytic pyrolysis of digestate[J]. 中国化学工程学报, 2023, 57(5): 1-9. |
[10] | Jiajia Chen, Xinyu Lu, Dandan Wang, Pengcheng Xiu, Xiaoli Gu. Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media[J]. 中国化学工程学报, 2023, 57(5): 50-62. |
[11] | Linlin Su, Meijun Chen, Li Gong, Hua Yang, Chao Chen, Jun Wu, Ling Luo, Gang Yang, Lulu Long. Boost activation of peroxymonosulfate by iron doped K2-xMn8O16: Mechanism and properties[J]. 中国化学工程学报, 2023, 57(5): 88-97. |
[12] | Chenyang Zhao, Yinhan Cheng, Guangfei Qu, Yongheng Yuan, Fenghui Wu, Ye Liu, Shan Liu, Junyan Li, Ping Ning. High-performance liquid-phase catalytic purification of phosphine in tail gas using Pd(II)/Cu(II) composite[J]. 中国化学工程学报, 2023, 57(5): 98-108. |
[13] | Bingxiao Feng, Lining Hao, Chaoting Deng, Jiaqiang Wang, Hongbing Song, Meng Xiao, Tingting Huang, Quanhong Zhu, Hengjun Gai. A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater[J]. 中国化学工程学报, 2023, 57(5): 338-348. |
[14] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures[J]. 中国化学工程学报, 2023, 56(4): 25-32. |
[15] | Juan Du, Aibing Chen, Senlin Hou, Xueqing Gao. Self-deposition for mesoporous carbon nanosheet with supercapacitor application[J]. 中国化学工程学报, 2023, 55(3): 34-40. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 103
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 191
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||