[1] B. Koerner, J. Klopatek, Anthropogenic and natural CO2 emission sources in an arid urban environment,Environ. Pollut. 116 (Suppl.1) (2002) S45-S51 [2] S.S. Shang, Z.Y. Tao, C. Yang, A. Hanif, L.C. Li, D.C.W. Tsang, Q.F. Gu, J. Shang, Facile synthesis of CuBTC and its graphene oxide composites as efficient adsorbents for CO2 capture, Chem. Eng. J. 393 (2020) 124666 [3] L. Li, N. Zhao, W. Wei, Y.H. Sun, A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences, Fuel 108 (2013) 112-130 [4] S. Chu, Carbon capture and sequestration, Science 325(5948) (2009) 1599 [5] A.A. Olajire, CO2 capture and separation technologies for end-of-pipe applications-A review, Energy 35 (6) (2010) 2610-2628 [6] B.Y. Li, Y.H. Duan, D. Luebke, B. Morreale, Advances in CO2 capture technology:A patent review, Appl. Energy 102 (2013) 1439-1447 [7] C.F. Song, Q.L. Liu, S. Deng, H.L. Li, Y. Kitamura, Cryogenic-based CO2 capture technologies:State-of-the-art developments and current challenges, Renew. Sustain. Energy Rev. 101 (2019) 265-278 [8] A.B. Chen, Y.F. Yu, Y.T. Li, Y.Q. Li, M.L. Jia, Solid-state grinding synthesis of ordered mesoporous MgO/carbon spheres composites for CO2 capture, Mater. Lett. 164 (2016) 520-523 [9] L.M. Yue, Q.Z. Xia, L.W. Wang, L.L. Wang, H. DaCosta, J. Yang, X. Hu,CO2 adsorption at nitrogen-doped carbons prepared by K2CO3 activation of urea-modified coconut shell, J. Colloid Interface Sci. 511 (2018) 259-267 [10] A.B. Rao, E.S. Rubin, A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control, Environ. Sci.Technol. 36 (20) (2002) 4467-4475 [11] X.L. Zhao, Q. Cui, B.D. Wang, X.L. Yan, S. Singh, F. Zhang, X. Gao, Y.L. Li, Recent progress of amine modified sorbents for capturing CO2 from flue gas, Chin. J. Chem. Eng. 26 (11) (2018) 2292-2302 [12] Z.W. Liang, K.Y. Fu, R. Idem, P. Tontiwachwuthikul, Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents, Chin. J. Chem. Eng. 24 (2) (2016) 278-288 [13] Q. Wang, J.Z. Luo, Z.Y. Zhong, A. Borgna, CO2 capture by solid adsorbents and their applications:Current status and new trends, Energy Environ. Sci. 4 (1) (2011) 42-55 [14] M.J. Regufe, A.F.P. Ferreira, J.M. Loureiro, Y.X. Shi, A. Rodrigues, A.M. Ribeiro, New hybrid composite honeycomb monolith with 13X zeolite and activated carbon for CO2 capture, Adsorption 24 (3) (2018) 249-265 [15] A. Sarwar, M. Ali, A.H. Khoja, A. Nawar, A. Waqas, R. Liaquat, S.R. Naqvi, M. Asjid, Synthesis and characterization of biomass-derived surface-modified activated carbon for enhanced CO2 adsorption, J. CO2 Util. 46 (2021) 101476 [16] A.A. Dabbawala, I. Ismail, B.V. Vaithilingam, K. Polychronopoulou, G. Singaravel, S. Morin, M. Berthod, Y. Al Wahedi, Synthesis of hierarchical porous Zeolite-Y for enhanced CO2 capture, Microporous Mesoporous Mater. 303 (2020) 110261 [17] F. Rezaei, S. Lawson, H. Hosseini, H. Thakkar, A. Hajari, S. Monjezi, A.A. Rownaghi, MOF-74 and UTSA-16 film growth on monolithic structures and their CO2 adsorption performance, Chem. Eng. J. 313 (2017) 1346-1353 [18] L.J. Nie, Y.Y. Mu, J.S. Jin, J. Chen, J.G. Mi, Recent developments and consideration issues in solid adsorbents for CO2 capture from flue gas, Chin. J. Chem. Eng. 26 (11) (2018) 2303-2317 [19] X.Y. Wang, D.P. Zhao, W.F. Chu, C. Yang, Y.N. Wang, X.X. Zhu, W.J. Xin, Z.N. Liu, H.X. Wang, S.L. Liu, L.Y. Xu, N-methyl-2-pyrrolidone-induced conversion of USY into hollow Beta zeolite and its application in the alkylation of benzene with isobutylene, Microporous Mesoporous Mater. 294 (2020) 109944 [20] C.J.A. Mota, D.L. Bhering, N. Rosenbach, A DFT study of the acidity of ultrastable Y zeolite:Where is the Brønsted/Lewis acid synergism? Angew. Chem. 116 (23) (2004) 3112-3115 [21] D. Nakrani, M. Belani, H.C. Bajaj, R.S. Somani, P.S. Singh, Concentrated colloidal solution system for preparation of uniform Zeolite-Y nanocrystals and their gas adsorption properties, Microporous Mesoporous Mater. 241 (2017) 274-284 [22] W.H. Gao, D. Butler, D.L. Tomasko, High-pressure adsorption of CO2 on NaY zeolite and model prediction of adsorption isotherms, Langmuir 20 (19) (2004) 8083-8089 [23] D. Lee, Y. Jin, N. Jung, J. Lee, J. Lee, Y.S. Jeong, S. Jeon, Gravimetric analysis of the adsorption and desorption of CO2 on amine-functionalized mesoporous silica mounted on a microcantilever array, Environ. Sci. Technol. 45 (13) (2011) 5704-5709 [24] S.C. Lee, C.C. Hsieh, C.H. Chen, Y.S. Chen, CO2 adsorption by Y-type zeolite impregnated with amines in indoor air, Aerosol Air Qual. Res. 13 (1) (2013) 360-366 [25] F.S. Su, C. Lu, S.C. Kuo, W.T. Zeng, Adsorption of CO2 on amine-functionalized Y-type zeolites, Energy Fuels 24 (2) (2010) 1441-1448 [26] S. Mutyala, S.M. Yakout, S.S. Ibrahim, M. Jonnalagadda, H. Mitta, Enhancement of CO2 capture and separation of CO2/N2 using post-synthetic modified MIL-100(Fe), New J. Chem. 43 (24) (2019) 9725-9731 [27] Q.Q Zhang, G.J. Zhang, H.Y. Yan, Y.F. Zhang, J. Liu, H.H. Cheng, Time-saving and cheap strategy to prepare large mesoporous materials for effient CO2adsorption, Ind. Eng. Chem. Res. 60 (2021) 9915-9927 [28] G.J. Zhang, P.Y. Zhao, L.X. Hao, Y. Xu, H.Z. Cheng, A novel amine double functionalized adsorbent for carbon dioxide capture using original mesoporous silica molecular sieves as support, Sep. Purif. Technol. 209 (2019) 516-527 [29] H. Bekhti, H. Bouchafaa, R. Melouki, A. Travert, Y. Boucheffa, Adsorption of CO2 over MgO-impregnated NaY zeolites and modeling study, Microporous Mesoporous Mater. 294 (2020) 109866 [30] K.K. Han, Y. Zhou, Y. Chun, J.H. Zhu, Efficient MgO-based mesoporous CO2 trapper and its performance at high temperature, J. Hazard. Mater. 203-204 (2012) 341-347 [31] K.S. Walton, M.B. Abney, M. Douglas LeVan, CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange, Microporous Mesoporous Mater. 91 (1-3) (2006) 78-84 [32] H.L. Zhao, W. Yan, Z.J. Bian, J. Hu, H.L. Liu, Investigation of Mg modified mesoporous silicas and their CO2 adsorption capacities, Solid State Sci. 14 (2) (2012) 250-257 [33] C. Boruban, E.N. Esenturk, Synthesis of CuO nanostructures on zeolite-Y and investigation of their CO2 adsorption properties, J. Mater. Res. 32 (19) (2017) 3669-3678 [34] K.C. Chanapattharapol, S. Krachuamram, S. Youngme, Study of CO2 adsorption on iron oxide doped MCM-41, Microporous Mesoporous Mater. 245 (2017) 8-15 [35] G.H. Chen, F. Wang, S.G. Wang, C.L. Ji, W.W. Wang, J.P. Dong, F. Gao, Facile fabrication of copper oxide modified activated carbon composite for efficient CO2 adsorption, Korean J. Chem. Eng. 38 (1) (2021) 46-54 [36] W.N.R.W. Isahak, Z.A.C. Ramli, M.W. Ismail, K. Ismail, R.M. Yusop, M.W.M. Hisham, M.A. Yarmo, Adsorption-desorption of CO2 on different type of copper oxides surfaces:Physical and chemical attractions studies, J. CO2 Util. 2 (2013) 8-15 [37] P.T. Huong, B.K. Lee, Improvement of selective separation of CO2 over N2 by transition metal-exchanged nano-zeolite, Microporous Mesoporous Mater. 241 (2017) 155-164 [38] S. Hosseini, I. Bayesti, E. Marahel, F. Eghbali Babadi, L. Chuah Abdullah, T.S.Y. Choong, Adsorption of carbon dioxide using activated carbon impregnated with Cu promoted by zinc, J. Taiwan Inst. Chem. Eng. 52 (2015) 109-117 [39] R.T. Yang, Adsorbents:Fundamentals and Applications, John Wiley & Sons, New York, 2003 [40] M.Z. Sun, Q.F. Gu, A. Hanif, T.Q. Wang, J. Shang, Transition metal cation-exchanged SSZ-13 zeolites for CO2 capture and separation from N2, Chem. Eng. J. 370 (2019) 1450-1458 [41] F. Gao, Y.Q. Wang, S.H. Wang, Selective adsorption of CO on CuCl/Y adsorbent prepared using CuCl2 as precursor:Equilibrium and thermodynamics, Chem. Eng. J. 290 (2016) 418-427 [42] K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J. 156 (1) (2010) 2-10 [43] Z.X. Zhao, S. Wang, Y. Yang, X.M. Li, J. Li, Z. Li, Competitive adsorption and selectivity of benzene and water vapor on the microporous metal organic frameworks (HKUST-1), Chem. Eng. J. 259 (2015) 79-89 [44] A.L. Myers, J.M. Prausnitz, Thermodynamics of mixed-gas adsorption, AIChE J. 11 (1) (1965) 121-127 [45] G.F. Chen, Y.X. An, Y.H. Shen, Y.Y. Wang, Z.L. Tang, B. Lu, D.H. Zhang, Effect of pore size on CH4/N2 separation using activated carbon, Chin. J. Chem. Eng. 28 (4) (2020) 1062-1068 [46] R. Melouki, A. Ouadah, P.L. Llewellyn, The CO2 adsorption behavior study on activated carbon synthesized from olive waste, J. CO2 Util. 42 (2020) 101292 [47] K.X. Zhang, H.Y. Li, X.J. Xu, H.W. Yu, Synthesis of reduced graphene oxide/NiO nanocomposites for the removal of Cr(VI) from aqueous water by adsorption, Microporous Mesoporous Mater. 255 (2018) 7-14 [48] M. Hong, S.Y. Wu, H.S. Jena, J.T. Li, L.F. Ding, J. Wang, L.F. Wei, Z. Ling, K. Li, S.F. Wang, Bio-based green solvent for metal-free aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfural over nitric acid-modified starch, Catal. Commun. 149 (2021) 106196 [49] Y.S. Tong, D.H. Yuan, W.N. Zhang, Y.X. Wei, Z.M. Liu, Y.P. Xu, Selective exchange of alkali metal ions on EAB zeolite, J. Energy Chem. 58 (2021) 41-47 |