[1] Z.L. Jian, L. Zhao, H.L. Pan, Y.S. Hu, H. Li, W. Chen, L.Q. Chen, Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries, Electrochem. Commun. 14 (1) (2012) 86-89 [2] X.D. Xiang, K. Zhang, J. Chen, Recent advances and prospects of cathode materials for sodium-ion batteries, Adv. Mater. 27 (36) (2015) 5343-5364 [3] Y.J. Fang, J.X. Zhang, L.F. Xiao, X.P. Ai, Y.L. Cao, H.X. Yang, Phosphate framework electrode materials for sodium ion batteries, Adv. Sci. 4 (5) (2017) 1600392 [4] Y. Xie, H. Gao, R. Harder, L. Li, J. Gim, H. Che, H. Wang, Y. Ren, X. Zhang, L. Li, Z. Chen, K. Amine, Z.-F. Ma, Revealing the structural evolution and phase transformation of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode material on sintering and cycling processes, ACS Appl. Energy Mater. 3 (2020) 6107-6114 [5] J. Gopalakrishnan, K.K. Rangan, Vanadium phosphate (V2(PO4)3):a novel NASICON-type vanadium phosphate synthesized by oxidative deintercalation of sodium from sodium vanadium phosphate (Na3V2(PO4)3), Chem. Mater. 4 (4) (1992) 745-747 [6] Z.L. Jian, Y.S. Hu, X.L. Ji, W. Chen, NASICON-structured materials for energy storage, Adv. Mater. 29 (20) (2017) 1601925 [7] Y.Y. Xie, H. Wang, G.L. Xu, J.J. Wang, H.P. Sheng, Z.H. Chen, Y. Ren, C.J. Sun, J.G. Wen, J. Wang, D.J. Miller, J. Lu, K. Amine, Z.F. Ma, In operando XRD and TXM study on the metastable structure change of NaNi1/3Fe1/3Mn1/3O2under electrochemical sodium-ion intercalation, Adv. Energy Mater. 6 (24) (2016) 1601306 [8] L.Q. Sun, Y.Y. Xie, X.Z. Liao, H. Wang, G.Q. Tan, Z.H. Chen, Y. Ren, J. Gim, W. Tang, Y.S. He, K. Amine, Z.F. Ma, Insight into Ca-substitution effects on O3-Type NaNi1/3 Fe1/3 Mn1/3 O2 cathode materials for sodium-ion batteries application, Small 14 (21) (2018) 1704523 [9] S. Kajiyama, J. Kikkawa, J. Hoshino, M. Okubo, E. Hosono, Assembly of Na3V2(PO4)3Nanoparticles confined in a one-dimensional carbon sheath for enhanced sodium-ion cathode properties, Chem. Eur. J. 20 (39) (2014) 12636-12640 [10] Y. Jiang, Z.Z. Yang, W.H. Li, L.C. Zeng, F.S. Pan, M. Wang, X. Wei, G.T. Hu, L. Gu, Y. Yu, Nanoconfined carbon-coated Na3V2(PO4)3Particles in mesoporous carbon enabling ultralong cycle life for sodium-ion batteries, Adv. Energy Mater. 5 (10) (2015) 1402104 [11] K. Saravanan, C.W. Mason, A. Rudola, K.H. Wong, P. Balaya, The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3for sodium ion batteries, Adv. Energy Mater. 3 (4) (2013) 444-450 [12] T.Y. Wei, G.Z. Yang, C.X. Wang, Bottom-up assembly of strongly-coupled Na3V2(PO4)3/C into hierarchically porous hollow nanospheres for high-rate and stable Na-ion storage, Nano Energy 39 (2017) 363-370 [13] X.X. Cao, A.Q. Pan, B. Yin, G.Z. Fang, Y.P. Wang, X.Z. Kong, T. Zhu, J. Zhou, G.Z. Cao, S.Q. Liang, Nanoflake-constructed porous Na3V2(PO4)3/C hierarchical microspheres as a bicontinuous cathode for sodium-ion batteries applications, Nano Energy 60 (2019) 312-323 [14] Q. Hu, J.Y. Liao, B.K. Zou, H.Y. Wang, C.H. Chen, In situ catalytic formation of graphene decoration on Na3V2(PO4)3 particles for ultrafast and long-life sodium storage, J. Mater. Chem. A 4 (43) (2016) 16801-16804 [15] X.M. Zhu, Y.J. Fang, X.P. Ai, H.X. Yang, Y.L. Cao, Na3V2(PO4)3/C nanocomposite synthesized via pre-reduction process as high-performance cathode material for sodium-ion batteries, J. Alloys Compd. 646 (2015) 170-174 [16] M.J. Aragón, P. Lavela, G.F. Ortiz, J.L. Tirado, Benefits of chromium substitution in Na3V2(PO4)3as a potential candidate for sodium-ion batteries, ChemElectroChem 2 (7) (2015) 995-1002 [17] L.Q. Mai, J.Z. Sheng, L. Xu, S.S. Tan, J.S. Meng, One-dimensional hetero-nanostructures for rechargeable batteries, Acc. Chem. Res. 51 (4) (2018) 950-959 [18] M. Guo, J.C. Wang, H.L. Dou, G.H. Gao, S.P. Wang, J.H. Wang, Z.W. Xiao, G.M. Wu, X.W. Yang, Z.F. Ma, Agglomeration-resistant 2D nanoflakes configured with super electronic networks for extraordinary fast and stable sodium-ion storage, Nano Energy 56 (2019) 502-511 [19] H. Li, Y. Bai, F. Wu, Y. Li, C. Wu, Budding willow branches shaped Na3V2(PO4)3/C nanofibers synthesized via an electrospinning technique and used as cathode material for sodium ion batteries, J. Power Sources 273 (2015) 784-792 [20] Y. Jiang, X.F. Zhou, D.J. Li, X.L. Cheng, F.F. Liu, Y. Yu, Highly reversible Na storage in Na3 V2 (PO4)3 by optimizing nanostructure and rational surface engineering, Adv. Energy Mater. 8 (16) (2018) 1800068 [21] J.Q. Fang, S.Q. Wang, X. Yao, X.C. Hu, Y. Wang, H.H. Wang, Ration design of porous Mn-doped Na3V2(PO4)3 cathode for high rate and super stable sodium-ion batteries, Electrochimica Acta 295 (2019) 262-269 [22] W. Shen, H. Li, Z.Y. Guo, C. Wang, Z.H. Li, Q.J. Xu, H.M. Liu, Y.G. Wang, Y.Y. Xia, Double-nanocarbon synergistically modified Na3V2(PO4)3:an advanced cathode for high-rate and long-life sodium-ion batteries, ACS Appl. Mater. Interfaces 8 (24) (2016) 15341-15351 [23] J.X. Zhang, Y.J. Fang, L.F. Xiao, J.F. Qian, Y.L. Cao, X.P. Ai, H.X. Yang, Graphene-scaffolded Na3 V2 (PO 4) 3 microsphere cathode with high rate capability and cycling stability for sodium ion batteries, ACS Appl. Mater. Interfaces 9 (8) (2017) 7177-7184 [24] H.Z. Chen, B. Zhang, X. Wang, P.Y. Dong, H. Tong, J.C. Zheng, W.J. Yu, J.F. Zhang, CNT-decorated Na3 V2 (PO 4)3 microspheres as a high-rate and cycle-stable cathode material for sodium ion batteries, ACS Appl. Mater. Interfaces 10 (4) (2018) 3590-3595 [25] J.Q. Fang, S.Q. Wang, Z.T. Li, H.B. Chen, L. Xia, L.X. Ding, H.H. Wang, Porous Na3V2(PO4)3@C nanoparticles enwrapped in three-dimensional graphene for high performance sodium-ion batteries, J. Mater. Chem. A 4 (4) (2016) 1180-1185 [26] S.L. Chen, F. Feng, Y.M. Yin, H.Y. Che, X.Z. Liao, Z.F. Ma, A solid polymer electrolyte based on star-like hyperbranched β-cyclodextrin for all-solid-state sodium batteries, J. Power Sources 399 (2018) 363-371 [27] S.L. Chen, F. Feng, Y.M. Yin, X. Lizo, Z.F. Ma, Plastic crystal polymer electrolytes containing boron based anion acceptors for room temperature all-solid-state sodium-ion batteries, Energy Storage Mater. 22 (2019) 57-65 [28] S.L. Chen, H.Y. Che, F. Feng, J.P. Liao, H. Wang, Y.M. Yin, Z.F. Ma, Poly(vinylene carbonate)-based composite polymer electrolyte with enhanced interfacial stability to realize high-performance room-temperature solid-state sodium batteries, ACS Appl. Mater. Interfaces 11 (46) (2019) 43056-43065 [29] Y. Yu, H.Y. Che, X.R. Yang, Y.H. Deng, L.S. Li, Z.F. Ma, Non-flammable organic electrolyte for sodium-ion batteries, Electrochem. Commun. 110 (2020) 106635 [30] C. Zhu, K. Song, P.A. van Aken, J. Maier, Y. Yu, Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix:an ultrafast Na-storage cathode with the potential of outperforming Li cathodes, Nano Lett. 14 (4) (2014) 2175-2180 [31] R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnik, J. Jamnik, Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites, J. Electrochem. Soc. 152 (3) (2005) A607 [32] W. Wang, Q.J. Xu, H.M. Liu, Y.G. Wang, Y.Y. Xia, A flexible symmetric sodium full cell constructed using the bipolar material Na3V2(PO4)3, J. Mater. Chem. A 5 (18) (2017) 8440-8450 [33] X.W. Liu, X.Y. Jiang, F.P. Zhong, X.M. Feng, W.H. Chen, X.P. Ai, H.X. Yang, Y.L. Cao, High-safety symmetric sodium-ion batteries based on nonflammable phosphate electrolyte and double Na3V2 (PO4)3 electrodes, ACS Appl. Mater. Interfaces 11 (31) (2019) 27833-27838 [34] A. Das, S.B. Majumder, A. Roy Chaudhuri, K+ and Mg2+ co-doped bipolar Na3V2(PO4)3:an ultrafast electrode for symmetric sodium ion full cell, J. Power Sources 461 (2020) 228149 [35] H.Y. Che, X.R. Yang, H. Wang, X.Z. Liao, S.S. Zhang, C.S. Wang, Z.F. Ma, Long cycle life of sodium-ion pouch cell achieved by using multiple electrolyte additives, J. Power Sources 407 (2018) 173-179 [36] H. Wang, X.Z. Liao, Y. Yang, X.M. Yan, Y.S. He, Z.F. Ma, Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high performance cathode materials for sodium ion batteries, J. Electrochem. Soc. 163 (3) (2016) A565-A570 [37] H.Y. Che, S.L. Chen, Y.Y. Xie, H. Wang, K. Amine, X.Z. Liao, Z.F. Ma, Electrolyte design strategies and research progress for room-temperature sodium-ion batteries, Energy Environ. Sci. 10 (5) (2017) 1075-1101 [38] S. Bag, C.T. Zhou, S. Reid, S. Butler, V. Thangadurai, Electrochemical studies on symmetric solid-state Na-ion full cell using Na3V2(PO4)3 electrodes and polymer composite electrolyte, J. Power Sources 454 (2020) 227954 [39] C.C. Wang, D.F. Du, M.M. Song, Y.H. Wang, F.J. Li, A high-power Na3V2(PO4)3-Bi sodium-ion full battery in a wide temperature range, Adv. Energy Mater. 9 (16) (2019) 1900022 [40] C.P. Zhao, J.H. Sun, Q.S. Wang, Thermal runaway hazards investigation on 18650 lithium-ion battery using extended volume accelerating rate calorimeter, J. Energy Storage 28 (2020) 101232 [41] X.N. Feng, M. Fang, X.M. He, M.G. Ouyang, L.G. Lu, H. Wang, M.X. Zhang, Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry, J. Power Sources 255 (2014) 294-301 [42] L. Ma, M.Y. Nie, J. Xia, J.R. Dahn, A systematic study on the reactivity of different grades of charged Li[NixMnyCoz]O2 with electrolyte at elevated temperatures using accelerating rate calorimetry, J. Power Sources 327 (2016) 145-150 [43] D.H. Doughty, Vehicle Battery Safety Roadmap Guidance, Office of Scientific and Technical Information (OSTI), 2012 [44] J. Jiang, J.R. Dahn, ARC studies of the thermal stability of three different cathode materials:LiCoO2; Li[Ni0.1Co0.8Mn0.1]O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes, Electrochem. Commun. 6 (1) (2004) 39-43 [45] Y.Y. Xie, G.L. Xu, H.Y. Che, H. Wang, K. Yang, X.R. Yang, F.M. Guo, Y. Ren, Z.H. Chen, K. Amine, Z.F. Ma, Probing thermal and chemical stability of NaxNi1/3Fe1/3Mn1/3O2 cathode material toward safe sodium-ion batteries, Chem. Mater. 30 (15) (2018) 4909-4918 [46] G.Y. Kim, J.R. Dahn, ARC studies of the effects of electrolyte additives on the reactivity of delithiated Li1-x[Ni1/3Mn1/3Co1/3]O2and Li1-x[Ni0.8Co0.15Al0.05]O2 Positive electrode materials with electrolyte, J. Electrochem. Soc. 161 (9) (2014) A1394-A1398 [47] B.X. Lei, W.J. Zhao, C. Ziebert, N. Uhlmann, M. Rohde, H. Seifert, Experimental analysis of thermal runaway in 18650 cylindrical Li-ion cells using an accelerating rate calorimeter, Batteries 3 (4) (2017) 14 [48] C.Y. Jhu, Y.W. Wang, C.Y. Wen, C.M. Shu, Thermal runaway potential of LiCoO2 and Li(Ni1/3Co1/3Mn1/3)O2 batteries determined with adiabatic calorimetry methodology, Appl. Energy 100 (2012) 127-131 |