[1] X. Yang, Z. Zhang, X. Wang, Y. Lin, B. Zhong, J. Liu, Thermodynamic study of phosphogypsum decomposition by sulfur, Journal of Chemical Thermodynamics 57(2013)39-45 [2] J. Gao, Q. Li, F.L. Liu, Calcium sulfate whisker prepared by flue gas desulfurization gypsum:A physical-chemical coupling production process, Chin. J. Chem. Eng. 28(8)(2020)2221-2226 [3] C.J. Liu, Q. Zhao, Y.G. Wang, P.Y. Shi, M.F. Jiang, Hydrothermal synthesis of calcium sulfate whisker from flue gas desulfurization gypsum, Chin. J. Chem. Eng. 24(11)(2016)1552-1560 [4] X. Sun, P. Ning, X. Tang, H. Yi, K. Li, L. Zhou, X. Xu, Environmental risk assessment system for phosphogypsum tailing dams, The Scientific World Journal,2013,(2013-12-8)(2013), 2013, 680798 [5] Bituh, T.; Vučić, Z.; Marović, G.; Prlić, I. A new approach to determine the phosphogypsum spread from the deposition site into the environment, Journal of Hazardous Materials 261(2013)584-592 [6] M. Al-Hwaiti, O. Al-Khashman, L. Al-Khateeb, F. Freig, Radiological hazard assessment for building materials incorporating phosphogypsum made using Eshidiya mine rock in Jordan, Environ. Earth Sci. 71(5)(2014)2257-2266 [7] M.P. Campos, L.J. Costa, M.B. Nisti, B.P. Mazzilli, Phosphogypsum recycling in the building materials industry:Assessment of the radon exhalation rate. Journal of Environmental Radioactivity 172(2017)232 [8] W. Shen, G. Gan, D. Rui, C. Hu, T. Yu, M. Zhou, Utilization of solidified phosphogypsum as Portland cement retarder, Journal of Material Cycles&Waste Management 14(2012)228-233 [9] T.S. Zhang, P. Gao, P.H. Gao, J.X. Wei, Q.J. Yu, Effectiveness of novel and traditional methods to incorporate industrial wastes in cementitious materials-An overview, Resour. Conserv. Recycl. 74(2013)134-143 [10] A.M. Rashad, Phosphogypsum as a construction material, Journal of Cleaner Production 166(2017)732-743 [11] O. Hentati, N. Abrantes, A.L. Caetano, S. Bouguerra, F. Gonçalves, J. Römbke, R. Pereira, Phosphogypsum as a soil fertilizer:Ecotoxicity of amended soil and elutriates to bacteria, invertebrates, algae and plants, Journal of Hazardous Materials 294(2015)80-89 [12] L. Zhao, T. Wan, X. Yang, Y. Lin, X. Kong, Z. Zhang, X. Wang, Effects of kaolinite addition on the melting characteristics of the reaction between phosphogypsum and CaS, Journal of Thermal Analysis&Calorimetry 119(2015)2119-2126 [13] H.Y. Sohn, M. Savic, R. Padilla, G. Han, A novel reaction system involving BaS and BaSO4 for converting SO2 to elemental sulfur without generating pollutants:Part I. Feasibility and kinetics of SO2 reduction with BaS, Chem. Eng. Sci. 61(15)(2006)5082-5087 [14] T. Shi, T.M. Wan, Z.Y. Zhang, X.S. Yang, L. Yang, B.H. Zhong, X.J. Kong, X.L. Wang, Effect of TiO2-SiO2 on the melting characteristics of reaction between phosphogypsum and calcium sulfide, J. Therm. Anal. Calorim. 123(2)(2016)1601-1609 [15] X. Jia, Q.H. Wang, K.F. Cen, L.M. Chen, An experimental study of CaSO4 decomposition during coal pyrolysis, Fuel 163(2016)157-165 [16] P. Ning, S.C. Zheng, L.P. Ma, Y.L. Du, W. Zhang, X.K. Niu, F.Y. Wang, Kinetics and thermodynamics studies on the decompositions of phosphogypsum in different atmospheres, Adv. Mater. Res. 160-162(2010)842-848 [17] X.M. Zhang, X.F. Song, Z. Sun, P. Li, J.G. Yu, Density functional theory study on the mechanism of calcium sulfate reductive decomposition by methane, Fuel 110(2013)204-211 [18] M. Zheng, Y.B. Xing, S.M. Zhong, H. Wang, Phase diagram of CaSO4 reductive decomposition by H2and CO, Korean J. Chem. Eng. 34(4)(2017)1266-1272 [19] L.P. Ma, P. Ning, S.C. Zheng, X.K. Niu, W. Zhang, Y.L. Du, Reaction mechanism and kinetic analysis of the decomposition of phosphogypsum via a solid-state reaction, Ind. Eng. Chem. Res. 49(8)(2010)3597-3602 [20] X.D. Yan, L.P. Ma, B. Zhu, D.L. Zheng, Y. Lian, Reaction mechanism process analysis with phosphogypsum decomposition in multiatmosphere control, Ind. Eng. Chem. Res. 53(50)(2014)19453-19459 [21] Y.H. Sun, Q. Zhao, C.H. Luo, G.X. Wang, Y. Sun, K.P. Yan, A novel strategy for the synthesis of Fe3(PO4)2 using Fe-P waste slag and CO2 followed by its use as the precursor for LiFePO4 preparation, ACS Omega 4(6)(2019)9932-9938 [22] Y. Wang, L.Y. Feng, Q. Zhao. Synthesis of LiFePO4/C composite using Fe2P2O7 as precusor by a two-step solid-state method, Chinese Journal of Inorganic Chemistry 34(2018)263-269 [23] H.C. Kang, G.X. Wang, H.Y. Guo, M. Chen, C.H. Luo, K.P. Yan, Facile synthesis and electrochemical performance of LiFePO4/C composites using Fe-P waste slag, Ind. Eng. Chem. Res. 51(23)(2012)7923-7931 [24] R.A. Mott, H.C. Wilkinson, The use of the Eschka method for the determination of high sulphur contents, Journal of Chemical Technology&Biotechnology Biotechnology 3(2010)218-223 [25] H. Nassar, H. Fredriksson, On Peritectic Reactions and Transformations in Low-Alloy Steels, Metallurgical and Materials Transactions A 41(2010)2776-2783 [26] C. Europe. Thermodynamic Properties of Compounds, ScF3 to TiF4. Springer Berlin Heidelberg, 2000 [27] I. Barin, O. Knacke, O. Kubaschewski, Thermochemical properties of inorganic substances[M]. Berlin, Heidelberg:Springer Berlin Heidelberg, 1977 [28] R.M. Smith, A.E. Martell, R.J. Motekaitis, NIST Standard Reference Database 46.(2003), https://www.nist.gov/system/files/documents/srd/46_8.htm [29] B. Yan, L.P. Ma, L.G. Xie, J. Ma, Z.C. Zi, X.D. Yan, Reaction mechanism for iron catalyst in the process of phosphogypsum decomposition, Ind. Eng. Chem. Res. 52(49)(2013)17383-17389 [30] Y.Q. Hou, R. Zhang, X.J. Han, Z.G. Huang, Y. Cui, The mechanism of CO regeneration on V2O5/AC catalyst and sulfur recovery, Chem. Eng. J. 316(2017)744-750 |