[1] A.J. Alpert, F.E. Regnier, Preparation of a porous microparticulatee anion-exchange chromatography support for proteins, J. Chromatogr. A, 185 (1979) 375-392 [2] A.J. Alpert, Cation-exchange high-performance liquid chromatography of proteins on poly(aspartic acid)-silica, J. Chromatogr., 266 (1983) 23-37 [3] W. Müller, New ion exchangers for the chromatography of biopolymers, J. Chromatogr. A, 510 (1990) 133-140 [4] M. Weitzhandler, D. Farnan, J. Horvath, J.S. Rohrer, R.W. Slingsby, N. Avdalovic, C. Pohl, Protein variant separations by cation-exchange chromatography on tentacle-type polymeric stationary phases, J. Chromatogr. A, 828 (1998) 365-372 [5] B.D. Bowes, H. Koku, K.J. Czymmek, A.M. Lenhoff, Protein adsorption and transport in dextran-modified ion-exchange media. I: Adsorption, J. Chromatogr. A, 1216 (2009) 7774-7784 [6] M.C. Stone, G. Carta, Protein adsorption and transport in agarose and dextran-grafted agarose media for ion exchange chromatography, J. Chromatogr. A, 1146 (2007) 202-215 [7] L.-L. Yu, S.-P. Tao, X.-Y. Dong, Y. Sun, Protein adsorption to poly(ethylenimine)-modified Sepharose FF: I. A critical ionic capacity for drastically enhanced capacity and uptake kinetics, J. Chromatogr. A, 1305 (2013) 76-84 [8] H.-Y. Wang, Y. Sun, S.-L. Zhang, J. Luo, Q.-H. Shi, Fabrication of high-capacity cation-exchangers for protein chromatography by atom transfer radical polymerization, Biochem. Eng. J., 113 (2016) 19-29 [9] F. Dismer, J. Hubbuch, A novel approach to characterize the binding orientation of lysozyme on ion-exchange resins, J. Chromatogr. A, 1149 (2007) 312-320 [10] N.B. Afeyan, N.F. Gordon, I. Mazsaroff, L. Varady, S.P. Fulton, Y.B. Yang, F.E. Regnier, Flow-through particles for the high-performance liquid chromatographic separation of biomolecules: perfusion chromatography, J. Chromatogr., 519 (1990) 1-29 [11] A. Staby, M.B. Sand, R.G. Hansen, J.H. Jacobsen, L.A. Andersen, M. Gerstenberg, U.K. Bruus, I.H. Jensen, Comparison of chromatographic ion-exchange resins III. Strong cation-exchange resins, J. Chromatogr. A, 1034 (2004) 85-97 [12] Q.H. Shi, X. Zhou, Y. Sun, A novel superporous agarose medium for high-speed protein chromatography, Biotechnol. Bioeng., 92 (2005) 643-651 [13] T.M. Pabst, J. Thai, A.K. Hunter, Evaluation of recent Protein A stationary phase innovations for capture of biotherapeutics, J. Chromatogr. A, 1554 (2018) 45-60 [14] A.R. Ubiera, G. Carta, Radiotracer measurements of protein mass transfer: kinetics in ion exchange media, Biotechnol. J., 1 (2006) 665-674 [15] B.D. Bowes, A.M. Lenhoff, Protein adsorption and transport in dextran-modified ion-exchange media. II. Intraparticle uptake and column breakthrough, J. Chromatogr. A, 1218 (2011) 4698-4708 [16] A.M. Lenhoff, Protein adsorption and transport in polymer-functionalized ion-exchangers, J. Chromatogr. A, 1218 (2011) 8748-8759 [17] S.H.S. Koshari, N.J. Wagner, A.M. Lenhoff, Effects of Resin Architecture and Protein Size on Nanoscale Protein Distribution in Ion-Exchange Media, Langmuir, 34 (2018) 673-684 [18] F. Dismer, M. Petzold, J. Hubbuch, Effects of ionic strength and mobile phase pH on the binding orientation of lysozyme on different ion-exchange adsorbents, J. Chromatogr. A, 1194 (2008) 11-21 [19] L.-L. Yu, Q.-H. Shi, Y. Sun, Effect of dextran layer on protein uptake to dextran-grafted adsorbents for ion-exchange and mixed-mode chromatography, J. Sep. Sci., 34 (2011) 2950-2959 [20] R. Liu, Q. Shi, Protein retention in dextran-grafted cation exchange chromatography: The influence of pHs, counterions and polymer structure, Chin. J. Chem. Eng., 28 (2020) 1904-1910 [21] A. Xue, Y. Sun, Visualization and Modeling of Protein Adsorption and Transport in DEAE- and DEAE-Dextran-Modified Bare Capillaries, Aiche J., 65 (2019) 305-316 [22] Y. Tao, G. Carta, G. Ferreira, D. Robbins, Adsorption of deamidated antibody variants on macroporous and dextran-grafted cation exchangers: II. Adsorption kinetics, J. Chromatogr. A, 1218 (2011) 1530-1537 [23] S.-L. Zhang, M. Zhao, W. Yang, J. Luo, Y. Sun, Q.-H. Shi, A novel polymer-grafted cation exchanger for high-capacity protein chromatography: The role of polymer architecture, Biochem. Eng. J., 128 (2017) 218-227 [24] M. Zhao, R. Liu, J. Luo, Y. Sun, Q. Shi, Fabrication of high-capacity cation-exchangers for protein adsorption: Comparison of grafting-from and grafting-to approaches, Front. Chem. Sci. Eng., 13 (2019) 120-132 [25] S. Wang, X. Li, Y. Sun, Poly(N,N-dimethylaminopropyl acrylamide)-grafted Sepharose FF: A new anion exchanger of very high capacity and uptake rate for protein chromatography, J. Chromatogr. A, 1597 (2019) 187-195 [26] R. Dong, S. Krishnan, B.A. Baird, M. Lindau, C.K. Ober, Patterned biofunctional poly(acrylic acid) brushes on silicon surfaces, Biomacromolecules, 8 (2007) 3082-3092 [27] A. Rastogi, S. Nad, M. Tanaka, N. Da Mota, M. Tague, B.A. Baird, H.D. Abruna, C.K. Ober, Preventing Nonspecific Adsorption on Polymer Brush Covered Gold Electrodes Using a Modified ATRP Initiator, Biomacromolecules, 10 (2009) 2750-2758 [28] T.Y. Xiao Li, Camille Bishop, Coleman Smith, Moshe Dolejsi, Helou Xie, Kazue Kurihara, Paul F. Nealey, Engineering the anchoring behavior of nematic liquid crystals on a solid surface by varying the density of liquid crystalline polymer brushes, Soft Matter 14 (2018) 7569–7577. [29] R. Barbey, L. Lavanant, D. Paripovic, N. Schuewer, C. Sugnaux, S. Tugulu, H.-A. Klok, Polymer Brushes via Surface-Initiated Controlled Radical Polymerization: Synthesis, Characterization, Properties, and Applications, Chem. Rev., 109 (2009) 5437-5527 [30] X. Chu, J. Yang, G. Liu, J. Zhao, Swelling enhancement of polyelectrolyte brushes induced by external ions, Soft Matter, 10 (2014) 5568-5578 [31] A. Dolatshahi-Pirouz, K. Rechendorff, M.B. Hovgaard, M. Foss, J. Chevallier, F. Besenbacher, Bovine serum albumin adsorption on nano-rough platinum surfaces studied by QCM-D, Colloid. Surface. B, 66 (2008) 53-59 [32] Y. Tapiero, J. Sánchez, B.L. Rivas, Interpenetrating polymers supported on microporous polypropylene membranes for the transport of chromium ions, Chem. J. Chem. Eng., 25 (2017) 938-946 [33] A. Salama, Chitosan based hydrogel assisted spongelike calcium phosphate mineralization for in-vitro BSA release, Int. J. Biol. Macromol., 108 (2018) 471-476 [34] C.G. Arges, K. Li, L. Zhang, Y. Kambe, G.-P. Wu, B. Lwoya, J.N.L. Albert, P.F. Nealey, R. Kumar, Ionic conductivity and counterion condensation in nanoconfined polycation and polyanion brushes prepared from block copolymer templates, Mol. Syst. Des. Eng., 4 (2019) 365-378 [35] R. Patel, W.S. Chi, S.H. Ahn, C.H. Park, H.-K. Lee, J.H. Kim, Synthesis of poly(vinyl chloride)-g-poly(3-sulfopropyl methacrylate) graft copolymers and their use in pressure retarded osmosis (PRO) membranes, Chem. Eng. J., 247 (2014) 1-8 [36] Z.H. Yang, J.A. Galloway, H.U. Yu, Protein interactions with poly(ethylene glycol) self-assembled monolayers on glass substrates: Diffusion and adsorption, Langmuir, 15 (1999) 8405-8411 [37] M. Ramstedt, N. Cheng, O. Azzaroni, D. Mossialos, H.J. Mathieu, W.T.S. Huck, Synthesis and characterization of poly(3-sulfopropylmethacrylate) brushes for potential antibacterial applications, Langmuir, 23 (2007) 3314-3321 [38] W.R. Glomm, O. Halskau, Jr., A.-M.D. Hanneseth, S. Volden, Adsorption behavior of acidic and basic proteins onto citrate-coated Au surfaces correlated to their native fold, stability, and pI, J. Phy. Chem. B, 111 (2007) 14329-14345 [39] M.S. Lord, M.H. Stenzel, A. Simmons, B.K. Milthorpe, Lysozyme interaction with poly(HEMA)-based hydrogel, Biomaterials, 27 (2006) 1341-1345 [40] D.Z. Shen, M.H. Huang, L.M. Chow, M.S. Yang, Kinetic profile of the adsorption and conformational change of lysozyme on self-assembled monolayers as revealed by quartz crystal resonator, Sensor. Actuat. B-Chem., 77 (2001) 664-670 [41] F. H??k, B. Kasemo, T. Nylander, C. Fant, K. Sott, H. Elwing, Variations in Coupled Water, Viscoelastic Properties, and Film Thickness of a Mefp-1 Protein Film during Adsorption and Cross-Linking: A Quartz Crystal Microbalance with Dissipation Monitoring, Ellipsometry, and Surface Plasmon Resonance Study, Anal. Chem., 73 (2001) 5796-5804 [42] F. H??k, J. Voros, M. Rodahl, R. Kurrat, P. Boni, J.J. Ramsden, M. Textor, N.D. Spencer, P. Tengvall, J. Gold, B. Kasemo, A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation, Colloid. Surface. B, 24 (2002) 155-170 [43] J.B. Schlenoff, A.H. Rmaile, C.B. Bucur, Hydration contributions to association in polyelectrolyte multilayers and complexes: Visualizing hydrophobicity, J. Am. Chem. Soc., 130 (2008) 13589-13597 [44] K. Xu, M.M. Ouberai, M.E. Welland, A comprehensive study of lysozyme adsorption using dual polarization interferometry and quartz crystal microbalance with dissipation, Biomaterials, 34 (2013) 1461-1470 [45] G. Anand, S. Sharma, A.K. Dutta, S.K. Kumar, G. Belfort, Conformational Transitions of Adsorbed Proteins on Surfaces of Varying Polarity, Langmuir, 26 (2010) 10803-10811 [46] L. Zhang, L. Wang, Y.-T. Kao, W. Qiu, Y. Yang, O. Okobiah, D. Zhong, Mapping hydration dynamics around a protein surface, P. Natl. Acad. Sci. USA, 104 (2007) 18461-18466 [47] L. Zhang, Y. Yang, Y.-T. Kao, L. Wang, D. Zhong, Protein Hydration Dynamics and Molecular Mechanism of Coupled Water-Protein Fluctuations, J. Am. Chem. Soc., 131 (2009) 10677-10691 [48] N.M. Eren, G. Narsimhan, O.H. Campanella, Protein adsorption induced bridging flocculation: the dominant entropic pathway for nano-bio complexation, Nanoscale, 8 (2016) 3326-3336 [49] P. Jia, M. He, Y. Gong, X. Chu, J. Yang, J. Zhao, Probing the Adjustments of Macromolecules during Their Surface Adsorption, Acs Appl. Mater. Inter., 7 (2015) 6422-6429 [50] J. Narayanan, A.S.A. Rasheed, J.R. Bellare, A small-angle X-ray scattering study of the structure of lysozyme-sodium dodecyl sulfate complexes, J. Colloid Interf. Sci., 328 (2008) 67-72 [51] O. Hollmann, C. Czeslik, Characterization of a planar poly(acrylic acid) brush as a materials coating for controlled protein immobilization, Langmuir, 22 (2006) 3300-3305 [52] N. Ishida, S. Biggs, Salt-induced structural behavior for poly(N-isopropylacryamide) grafted onto solid surface observed directly by AFM and QCM-D, Macromolecules, 40 (2007) 9045-9052 [53] N. Ishida, S. Biggs, Effect of Grafting Density on Phase Transition Behavior for Poly(N-isopropylacryamide) Brushes in Aqueous Solutions Studied by AFM and QCM-D, Macromolecules, 43 (2010) 7269-7276 [54] S. Belegrinou, I. Mannelli, P. Lisboa, F. Bretagnol, A. Valsesia, G. Ceccone, P. Colpo, H. Rauscher, F. Rossi, pH-dependent immobilization of proteins on surfaces functionalized by plasma-enhanced chemical vapor deposition of poly(acrylic acid)- and poly(ethylene oxide)-like films, Langmuir, 24 (2008) 7251-7261 [55] L. Yu, R. Xu, X. Dong, Y. Liu, Y. Sun, Protein adsorption to (3-acrylamido propyl) trimethyl ammonium chloride-grafted Sepharose gel: Charge density reduction via copolymerizing with electroneutral monomer drastically increases uptake rate, J. Chromatogr. A, 1629 (2020) 461483 |