[1] J.J. Alves, G.P. Towler, Analysis of refinery hydrogen distribution systems, Ind. Eng. Chem. Res. 41 (23) (2002) 5759–5769 [2] M.M. El-Halwagi, F. Gabriel, D. Harell, Rigorous graphical targeting for resource conservation via material recycle/reuse networks, Ind. Eng. Chem. Res. 42 (19) (2003) 4319–4328 [3] S. Bandyopadhyay, Source composite curve for waste reduction, Chem. Eng. J. 125 (2) (2006) 99–110 [4] D.C.Y. Foo, Z.A. Manan, Setting the minimum utility gas flowrate targets using cascade analysis technique, Ind. Eng. Chem. Res. 45 (17) (2006) 5986–5995 [5] V. Agrawal, U.V. Shenoy, Unified conceptual approach to targeting and design of water and hydrogen networks, AIChE J. 52 (3) (2006) 1071–1082 [6] C. Deng, Y.H. Zhou, C.L. Chen, X. Feng, Systematic approach for targeting interplant hydrogen networks, Energy 90 (2015) 68–88 [7] Z. Zhao, G.L. Liu, X. Feng, The integration of the hydrogen distribution system with multiple impurities, Chem. Eng. Res. Des. 85 (9) (2007) 1295–1304 [8] G.L. Liu, H. Li, X. Feng, C. Deng, K.H. Chu, A conceptual method for targeting the maximum purification feed flow rate of hydrogen network, Chem. Eng. Sci. 88 (2013) 33–47 [9] Z.W. Liao, G. Rong, J.D. Wang, Y.R. Yang, Rigorous algorithmic targeting methods for hydrogen networks—Part II: Systems with one hydrogen purification unit, Chem. Eng. Sci. 66 (5) (2011) 821–833 [10] Z.W. Liao, G. Rong, J.D. Wang, Y.R. Yang, Rigorous algorithmic targeting methods for hydrogen networks—Part I: Systems with no hydrogen purification, Chem. Eng. Sci. 66 (5) (2011) 813–820 [11] C. Deng, J. Liu, Y.H. Zhou, X. Feng, Design of hydrogen network integrated with the shared purifier in hydrogen production plant, Ind. Eng. Chem. Res. 58(24) (2019) 10466–10481 [12] R. Prakash, U.V. Shenoy, Targeting and design of water networks for fixed flowrate and fixed contaminant load operations, Chem. Eng. Sci. 60 (1) (2005) 255–268 [13] C. Deng, M.Q. Zhu, Y.H. Zhou, X. Feng, Novel conceptual methodology for hydrogen network design with minimum compression work, Energy 159 (2018) 203–215 [14] N. Hallale, F. Liu, Refinery hydrogen management for clean fuels production, Adv. Environ. Res. 6 (1) (2001) 81–98 [15] N. Jia, N. Zhang, Multi-component optimisation for refinery hydrogen networks, Energy 36 (8) (2011) 4663–4670 [16] C. Deng, H.M. Pan, J.Y. Lee, D.C.Y. Foo, X. Feng, Synthesis of hydrogen network with hydrogen header of intermediate purity, Int. J. Hydrog. Energy 39 (25) (2014) 13049–13062 [17] L.X. Kang, X.Q. Liang, Y.Z. Liu, Design of multiperiod hydrogen network with flexibilities in subperiods and redundancy control, Int. J. Hydrog. Energy 43 (2) (2018) 861–871 [18] B. Umana, A. Shoaib, N. Zhang, R. Smith, Integrating hydroprocessors in refinery hydrogen network optimisation, Appl. Energy 133 (2014) 169–182 [19] S.D. Wu, G.L. Liu, Z.M. Yu, X. Feng, Y.B. Liu, C. Deng, Optimization of hydrogen networks with constraints on hydrogen concentration and pure hydrogen load considered, Chem. Eng. Res. Des. 90 (9) (2012) 1208–1220 [20] K.Y. Li, L.H. Zhou, G.L. Liu, Integration of the hydrogen-storage purification and hydrogen network, Ind. Eng. Chem. Res. 59 (21) (2020) 10018–10030 [21] M.R. Rahimpour, M. Ghaemi, S.M. Jokar, O. Dehghani, M. Jafari, S. Amiri, S. Raeissi, The enhancement of hydrogen recovery in PSA unit of domestic petrochemical plant, Chem. Eng. J. 226 (2013) 444–459 [22] A. Suzuki, H. Yukawa, T. Nambu, Y. Matsumoto, Y. Murata, Analysis of pressure-composition-isotherms for design of non-Pd-based alloy membranes with high hydrogen permeability and strong resistance to hydrogen embrittlement, J. Membr. Sci. 503 (2016) 110–115 [23] S.H. Wang, L. Zhou, X. Ji, I.A. Karimi, G. He, Y.G. Dang, X. Xu, A surrogate-assisted approach for the optimal synthesis of refinery hydrogen networks, Ind. Eng. Chem. Res. 58 (36) (2019) 16798–16812 [24] L.J. Huang, G.L. Liu, Optimization of the hydrogen separator based on the hydrogen network integration, J. Clean. Prod. 235 (2019) 1399–1408 [25] H.R. Li, Z.W. Liao, J.Y. Sun, B.B. Jiang, J.D. Wang, Y.R. Yang, Simultaneous design of hydrogen allocation networks and PSA inside refineries, Ind. Eng. Chem. Res. 59(10) (2020) 4712–4720 [26] M.B. Yang, X. Feng, Simulation-based optimization and design of refinery hydrogen networks with hydrogen sulfide removal, Int. J. Hydrog. Energy 44 (43) (2019) 23833–23845 [27] L. Zhou, Z.W. Liao, J.D. Wang, B.B. Jiang, Y.R. Yang, Simultaneous optimization of hydrogen network with desulfurization processes embedded, Computer Aided Chemical Engineering, Elsevier, Amsterdam, 2012, pp. 215–219. [28] Q. Zhang, Y. Yang, X. Feng, M.B. Yang, L. Zhao, The integration of hybrid hydrogen networks for refinery and synthetic plant of chemicals, Int. J. Hydrog. Energy 46 (2) (2021) 1473–1487 [29] Y.Q. Jiao, H.Y. Su, W.F. Hou, Z.W. Liao, A multiperiod optimization model for hydrogen system scheduling in refinery, Ind. Eng. Chem. Res. 51 (17) (2012) 6085–6098 [30] L. Zhou, Z.W. Liao, J.D. Wang, B.B. Jiang, Y.R. Yang, MPEC strategies for efficient and stable scheduling of hydrogen pipeline network operation, Appl. Energy 119 (2014) 296–305 [31] Y.Q. Jiao, H.Y. Su, W.F. Hou, Z.W. Liao, Optimization of refinery hydrogen network based on chance constrained programming, Chem. Eng. Res. Des. 90 (10) (2012) 1553–1567 [32] J.Y. Lou, Z.W. Liao, B.B. Jiang, J.D. Wang, Y.R. Yang, Robust optimization of hydrogen network, Int. J. Hydrog. Energy, 39(3) (2014) 1210–1219 [33] A. Jagannath, A. Almansoori, Modeling of hydrogen networks in a refinery using a stochastic programming appraoch, Ind. Eng. Chem. Res. 53 (51) (2014) 19715–19735 [34] Z.W. Liao, J.Y. Lou, J.D. Wang, B.B. Jiang, Y.R. Yang, Mixing potential: A new concept for optimal design of hydrogen and water networks with higher disturbance resistance, AIChE J. 60 (11) (2014) 3762–3772 [35] M.R. Sardashti Birjandi, F. Shahraki, K. Razzaghi, Hydrogen network retrofit via flexibility analysis: The steady-state flexibility index, Chem. Eng. Res. Des. 117 (2017) 83–94 [36] X.Q. Liang, L.X. Kang, Y.Z. Liu, The flexible design for optimization and debottlenecking of multiperiod hydrogen networks, Ind. Eng. Chem. Res. 55(9) (2016) 2574–2583 [37] L.X. Kang, Y.H. Jiang, Y.Z. Liu, Impacts of synthesis schemes on economy and flexibility of hydrogen networks, Chem. Eng. Sci. 207 (2019) 1159–1174 [38] Y. Chen, M. Lin, H. Jiang, Z.H. Yuan, B.Z. Chen, Optimal design and operation of refinery hydrogen systems under multi-scale uncertainties, Comput. Chem. Eng. 138 (2020) 106822 [39] C.L. Chang, Z.W. Liao, M.J. Bagajewicz, New superstructure-based model for the globally optimal synthesis of refinery hydrogen networks, J. Clean. Prod. 292 (2021) 126022 [40] H.J. Zimmermann, Fuzzy programming and linear programming with several objective functions, Fuzzy Sets Syst. 1 (1) (1978) 45–55 [41] K.B. Aviso, C.L. Sy, R.R. Tan, A.T. Ubando, Fuzzy optimization of carbon management networks based on direct and indirect biomass co-firing, Renew. Sustain. Energy Rev. 132 (2020) 110035 [42] R.R. Tan, D.E. Cruz, Synthesis of robust water reuse networks for single-component retrofit problems using symmetric fuzzy linear programming, Comput. Chem. Eng. 28 (12) (2004) 2547–2551 [43] K.B. Aviso, R.R. Tan, A.B. Culaba, J.B. CruzJr, Bi-level fuzzy optimization approach for water exchange in eco-industrial Parks, Process. Saf. Environ. Prot. 88 (1) (2010) 31–40 [44] K.B. Aviso, R.R. Tan, A.B. Culaba, Designing eco-industrial water exchange networks using fuzzy mathematical programming, Clean Technol. Environ. Policy 12 (4) (2010) 353–363 [45] R.R. Tan, Fuzzy optimization model for source-sink water network synthesis with parametric uncertainties, Ind. Eng. Chem. Res. 50 (7) (2011) 3686–3694 [46] M.R. Sardashti Birjandi, F. Shahraki, K. Razzaghi, Hydrogen and CO2 management in the refinery with fuzzy multiobjective nonlinear programming, Chem. Eng. Technol. 42 (9) (2019) 1941–1951 [47] Q. Zhang, J. Li, X. Feng, Thermodynamic principle based hydrogen network synthesis with hydrorefining feed oil sulfur content variation for total exergy minimization, J. Clean. Prod. 256 (2020) 120230 [48] L.L. Wei, Z.W. Liao, B.B. Jiang, J.D. Wang, Y.R. Yang, Automatic design of multi-impurity refinery hydrogen networks using mixing potential concept, Ind. Eng. Chem. Res. 56 (23) (2017) 6703–6710 [49] E.R. Arriola, A.T. Ubando, W.H. Chen, A bibliometric review on the application of fuzzy optimization to sustainable energy technologies, Int. J. Energy Res. (2020) 1–22 [50] H.R. Li, Z.W. Liao, J.Y. Sun, B.B. Jiang, J.D. Wang, Y.R. Yang, Modelling and simulation of two-bed PSA process for separating H2 from methane steam reforming, Chin. J. Chem. Eng. 27 (8) (2019) 1870–1878 [51] S. Bandyopadhyay, N.D. Chaturvedi, A. Desai, Targeting compression work for hydrogen allocation networks, Ind. Eng. Chem. Res. 53 (48) (2014) 18539–18548 |