[1] P.K. Kilpatrick, Water-in-crude oil emulsion stabilization: review and unanswered questions, Energy Fuels 26 (7) (2012) 4017–4026 [2] T. Kar, B. Hascakir, The role of resins, asphaltenes, and water in water–oil emulsion breaking with microwave heating, Energy Fuels 29 (6) (2015) 3684–3690 [3] E.B. da Silva, D. Santos, M.P. de Brito, R.C.L. Guimar?es, B.M.S. Ferreira, L.S. Freitas, M.C.V. de Campos, E. Franceschi, C. Dariva, A.F. Santos, M. Fortuny, Microwave demulsification of heavy crude oil emulsions: Analysis of acid species recovered in the aqueous phase, Fuel 128 (2014) 141–147 [4] B. Peng, M. Y. Li, S. Q. Zhao, Z. L. Wu, J. Sjoblom, H. Hoiland, Study of oil/water interfacial tension of vacuum residual fractions from Iranian Light crude oil, Chin. J. Chem. Eng. 11(6) (2003) 681-685 [5] O. C. Mullins, The asphaltenes, Annu. Rev. Anal. Chem. 4 (2011) 393-418 [6] Y. Bai, H. Sui, X.Y. Liu, L. He, X.G. Li, E. Thormann, Effects of the N, O, and S heteroatoms on the adsorption and desorption of asphaltenes on silica surface: a molecular dynamics simulation, Fuel 240 (2019) 252–261 [7] H.S. Silva, A.C.R. Sodero, B. Bouyssiere, H. Carrier, J.P. Korb, A. Alfarra, G. Vallverdu, D. Bégué, I. Baraille, Molecular dynamics study of nanoaggregation in asphaltene mixtures: effects of the N, O, and S heteroatoms, Energy Fuels 30 (7) (2016) 5656–5664 [8] M. Lashkarbolooki, R. Parvizi, S. Ayatollahi, E. Ghaseminejad Raeeni, Effect of salts and their interaction with ingenious surfactants on the interfacial tension of crude oil/ionic solution, Chin. J. Chem. Eng. 28 (1) (2020) 224–235 [9] M.D. Lobato, F. Gámez, S. Lago, J.M. Pedrosa, The influence of the polarity of fractionated asphaltenes on their Langmuir-film properties, Fuel 200 (2017) 162–170 [10] H. Y. Wang, M. Y. Li, Z. L. Wu, M. Q. Lin, Effect of petroleum sulphonate on interfacial property and stability of crude oil emulsions, Chin. J. Chem. Eng. 13(5) (2005) 691-695 [11] M. Lashkarbolooki, S. Ayatollahi, Experimental and modeling investigation of dynamic interfacial tension of asphaltenic-acidic crude oil/aqueous phase containing different ions, Chin. J. Chem. Eng. 25 (12) (2017) 1820–1830 [12] V. Pauchard, J.P. Rane, S. Banerjee, Asphaltene-laden interfaces form soft glassy layers in contraction experiments: a mechanism for coalescence blocking, Langmuir 30 (43) (2014) 12795–12803 [13] F. Yang, Y.S. Zhao, J. Sj?blom, C.X. Li, K.G. Paso, Polymeric wax inhibitors and pour point depressants for waxy crude oils: a critical review, J. Dispers. Sci. Technol. 36 (2) (2015) 213–225 [14] S.Z. Yi, J.J. Zhang, Relationship between waxy crude oil composition and change in the morphology and structure of wax crystals induced by pour-point-depressant beneficiation, Energy Fuels 25 (4) (2011) 1686–1696 [15] B. Yao, C. Li, F. Yang, X. Zhang, Z. Mu, G. Sun, Y. Zhao, Ethylene–vinyl acetate copolymer and resin-stabilized asphaltenes synergistically improve the flow behavior of model waxy oils. 1. Effect of wax content and the synergistic mechanism, Energy Fuels 32(2) (2018) 1567-1578 [16] R.A. Soldi, A.R.S. Oliveira, R.V. Barbosa, M.A.F. César-Oliveira, Polymethacrylates: Pour point depressants in diesel oil, Eur. Polym. J. 43 (8) (2007) 3671–3678 [17] A. Omidi, A.K. Manshad, S. Moradi, J.A. Ali, S.M. Sajadi, A. Keshavarz, Smart- and nano-hybrid chemical EOR flooding using Fe3O4/eggshell nanocomposites, J. Mol. Liq. 316 (2020) 113880 [18] A. Rezaei, M. Riazi, M. Escrochi, R. Elhaei, Integrating surfactant, alkali and nano-fluid flooding for enhanced oil recovery: a mechanistic experimental study of novel chemical combinations, J. Mol. Liq. 308 (2020) 113106 [19] F. Yang, B. Yao, C.X. Li, G.Y. Sun, X.B. Ma, Oil dispersible polymethylsilsesquioxane (PMSQ) microspheres improve the flow behavior of waxy crude oil through spacial hindrance effect, Fuel 199 (2017) 4–13 [20] M. Rondón, P. Bouriat, J. Lachaise, J.L. Salager, Breaking of water-in-crude oil emulsions. 1. physicochemical phenomenology of demulsifier action, Energy Fuels 20 (4) (2006) 1600–1604 [21] P. Bouriat, N. El Kerri, A. Graciaa, J. Lachaise, Properties of a two-dimensional asphaltene network at the water-cyclohexane interface deduced from dynamic tensiometry, Langmuir 20 (18) (2004) 7459–7464 [22] L.Y. Zhang, P. Breen, Z.H. Xu, J.H. Masliyah, Asphaltene films at a toluene/water interface, Energy Fuels 21 (1) (2007) 274–285 [23] D.M. Sztukowski, M. Jafari, H. Alboudwarej, H.W. Yarranton, Asphaltene self-association and water-in-hydrocarbon emulsions, J Colloid Interface Sci 265 (1) (2003) 179–186 [24] J.D. McLean, P.K. Kilpatrick, Effects of asphaltene solvency on stability of water-in-crude-oil emulsions, J. Colloid Interface Sci. 189 (2) (1997) 242–253 [25] Xia L, Lu S, Cao G, Stability and demulsification of emulsions stabilized by asphaltenes or resins, J Colloid Interface Sci 271 (2) (2004) 504–506 [26] B. Yao, C. Li, F. Yang, X. Zhang, Z. Mu, G. Sun, G. Liu, Y. Zhao, Ethylene–vinyl acetate copolymer and resin-stabilized asphaltenes synergistically improve the flow behavior of model waxy oils. 2. Effect of asphaltene content, Energy Fuels 32(5) (2018) 5834-5845 [27] B. Yao, C.X. Li, Z.H. Mu, X.P. Zhang, F. Yang, G.Y. Sun, Y.S. Zhao, Ethylene-vinyl acetate copolymer (EVA) and resin-stabilized asphaltenes synergistically improve the flow behavior of model waxy oils. 3. effect of vinyl acetate content, Energy Fuels 32 (8) (2018) 8374–8382 [28] C.L. Chang, H.S. Fogler, Stabilization of asphaltenes in aliphatic solvents using alkylbenzene-derived amphiphiles. 2. study of the asphaltene-amphiphile interactions and structures using Fourier transform infrared spectroscopy and small-angle X-ray scattering techniques, Langmuir 10 (6) (1994) 1758–1766 [29] Y.M. Wu, G.D. Ni, F. Yang, C.X. Li, G.L. Dong, Modified maleic anhydride Co-polymers as pour-point depressants and their effects on waxy crude oil rheology, Energy Fuels 26 (2) (2012) 995–1001 [30] T. Kuznicki, J.H. Masliyah, S. Bhattacharjee, Molecular dynamics study of model molecules resembling asphaltene-like structures in aqueous organic solvent systems, Energy Fuels 22 (4) (2008) 2379–2389 [31] T. Kuznicki, J.H. Masliyah, S. Bhattacharjee, Aggregation and partitioning of model asphaltenes at toluene-water interfaces: Molecular dynamics simulations, Energy Fuels 23 (10) (2009) 5027–5035 [32] F. Fallah, F. Khabaz, Y.R. Kim, S.R. Kommidi, H.F. Haghshenas, Molecular dynamics modeling and simulation of bituminous binder chemical aging due to variation of oxidation level and saturate-aromatic-resin-asphaltene fraction, Fuel 237 (2019) 71–80 [33] X.P. Zhang, F. Yang, B. Yao, C.X. Li, D.W. Liu, G.Y. Sun, Synergistic effect of asphaltenes and octadecyl acrylate-maleic anhydride copolymers modified by aromatic pendants on the flow behavior of model waxy oils, Fuel 260 (2020) 116381 [34] X.L. Zhang, D.J. Taylor, R.K. Thomas, J. Penfold, Adsorption of polyelectrolyte/surfactant mixtures at the air-water interface: modified poly(ethyleneimine) and sodium dodecyl sulfate, Langmuir 27 (6) (2011) 2601–2612 [35] X.M. Luo, H.Y. Gong, Z.L. He, P. Zhang, L.M. He, Research on mechanism and characteristics of oil recovery from oily sludge in ultrasonic fields, J Hazard Mater 399 (2020) 123137 [36] D. Dudá?ová, S. Simon, P.V. Hemmingsen, J. Sj?blom, Study of asphaltenes adsorption onto different minerals and clays: Part 1. Experimental adsorption with UV depletion detection, Colloids Surfaces A: Physicochem. Eng. Aspects 317 (1–3) (2008) 1–9 [37] N.X. Yan, J.H. Masliyah, Characterization and demulsification of solids-stabilized oil-in-water emulsions Part 1. Partitioning of clay particles and preparation of emulsions, Colloids Surfaces A: Physicochem. Eng. Aspects 96 (3) (1995) 229–242 [38] A.L.C. Machado, E.F. Lucas, G. González, Poly(ethylene-co-vinyl acetate) (EVA) as wax inhibitor of a Brazilian crude oil: oil viscosity, pour point and phase behavior of organic solutions, J. Petroleum Sci. Eng. 32 (2–4) (2001) 159–165 [39] C.J. Wu, J.L. Zhang, W. Li, N. Wu, Molecular dynamics simulation guiding the improvement of EVA-type pour point depressant, Fuel 84 (16) (2005) 2039–2047 [40] C.W. Angle, Y.J. Hua, Dilational interfacial rheology for increasingly deasphalted bitumens and n-C5 asphaltenes in toluene/NaHCO3 solution, Energy Fuels 26 (10) (2012) 6228–6239 [41] S. Subramanian, S. Simon, J. Sj?blom, Interfacial dilational rheology properties of films formed at the oil/water interface by reaction between tetrameric acid and calcium ion, J. Dispers. Sci. Technol. 38 (8) (2017) 1110–1116 [42] D.W. Liu, C.X. Li, X.P. Zhang, F. Yang, G.Y. Sun, B. Yao, H. Zhang, Polarity effects of asphaltene subfractions on the stability and interfacial properties of water-in-model oil emulsions, Fuel 269 (2020) 117450 [43] J. Moncada, D. Schartung, N. Stephens, T.S. Oh, C.A. Carrero, Determining the flocculation point of asphaltenes combining ultrasound and electrochemical impedance spectroscopy, Fuel 241 (2019) 870–875 [44] R. Pichot, F. Spyropoulos, I.T. Norton, Competitive adsorption of surfactants and hydrophilic silica particles at the oil-water interface: interfacial tension and contact angle studies, J Colloid Interface Sci 377 (1) (2012) 396–405 |