[1] Y.K. Kim, S.E. Park, H. Lee, J.Y. Yun, Enhancement of bioethanol production in syngas fermentation with Clostridium Ljungdahlii using nanoparticles, Bioresour. Technol. 159 (2014) 446–450 [2] Y.K. Kim, H. Lee, Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation, Bioresour. Technol. 204 (2016) 139–144 [3] á. O’Driscoll, J.J. Leahy, T. Curtin, The influence of metal selection on catalyst activity for the liquid phase hydrogenation of furfural to furfuryl alcohol, Catal. Today 279 (2017) 194–201 [4] R.M. Mironenko, O.B. Belskaya, T.I. Gulyaeva, M.V. Trenikhin, A.I. Nizovskii, A.V. Kalinkin, V.I. Bukhtiyarov, A.V. Lavrenov, V.A. Likholobov, Liquid-phase hydrogenation of benzaldehyde over Pd-Ru/C catalysts: Synergistic effect between supported metals, Catal. Today 279 (2017) 2–9 [5] S. Srivastava, G.C. Jadeja, J. Parikh, Copper–cobalt catalyzed liquid phase hydrogenation of furfural to 2-methylfuran: An optimization, kinetics and reaction mechanism study, Chem. Eng. Res. Des. 132 (2018) 313–324 [6] G.A. Filonenko, W.L. Vrijburg, E.J.M. Hensen, E.A. Pidko, On the activity of supported Au catalysts in the liquid phase hydrogenation of CO2 to formates, J. Catal. 343 (2016) 97–105 [7] J.T. Tinge, A.A.H. Drinkenburg, Absorption of gases into activated carbon–water slurries in a stirred cell, Chem. Eng. Sci. 47 (6) (1992) 1337–1345 [8] E. Alper, B. Wichtendahl, W.D. Deckwer, Gas absorption mechanism in catalytic slurry reactors, Chem. Eng. Sci. 35 (1–2) (1980) 217–222 [9] O. Ozkan, A. Calimli, R. Berber, H. Oguz, Effect of inert solid particles at low concentrations on gas–liquid mass transfer in mechanically agitated reactors, Chem. Eng. Sci. 55 (14) (2000) 2737–2740 [10] R.L. Kars, R.J. Best, A.A.H. Drinkenburg, The sorption of propane in slurries of active carbon in water, Chem. Eng. J. 17 (3) (1979) 201–210 [11] K.C. Ruthiya, B.F.M. Kuster, J.C. Schouten, Gas–liquid mass transfer enhancement in a surface aeration stirred slurry reactors, Can. J. Chem. Eng. 81 (3–4) (2008) 632–639 [12] J.F. Demmink, A. Mehra, A.A.C.M. Beenackers, Gas absorption in the presence of particles showing interfacial affinity: Case of fine sulfur precipitates, Chem. Eng. Sci. 53 (16) (1998) 2885–2902 [13] J.F. Demmink, A. Mehra, A.A.C.M. Beenackers, Absorption of hydrogen sulfide into aqueous solutions of ferric nitrilotriacetic acid: Local auto-catalytic effects, Chem. Eng. Sci. 57 (10) (2002) 1723–1734 [14] M.V. Dagaonkar, H.J. Heeres, A.A.C.M. Beenackers, V.G. Pangarkar, The application of fine TiO2 particles for enhanced gas absorption, Chem. Eng. J. 92 (1–3) (2003) 151–159 [15] D.W.F. Brilman, W.P.M. van Swaaij, G.F. Versteeg, A one-dimensional instationary heterogeneous mass transfer model for gas absorption in multiphase systems, Chem. Eng. Process. Process. Intensif. 37 (6) (1998) 471–488 [16] G.D. Zhang, W.F. Cai, C.J. Xu, M. Zhou, A general enhancement factor model of the physical absorption of gases in multiphase systems, Chem. Eng. Sci. 61 (2) (2006) 558–568 [17] E. Brunner, Solubility of hydrogen in 10 organic solvents at 298.15, 323.15, and 373.15 K, J. Chem. Eng. Data 30 (3) (1985) 269–273 [18] H. Vinke, P.J. Hamersma, J.M.H. Fortuin, Enhancement of the gas-absorption rate in agitated slurry reactors by gas-adsorbing particles adhering to gas bubbles, Chem. Eng. Sci. 48 (12) (1993) 2197–2210 [19] G. Batchelor, The Theory of Homogeneous Turbulence, 2nd ed., Cambridge University Press, Cambridge, 1971 [20] E. Nagy, T. Feczkó, B. Koroknai, Enhancement of oxygen mass transfer rate in the presence of nanosized particles, Chem. Eng. Sci. 62 (24) (2007) 7391–7398 [21] G.I. Taylor, The viscosity of a fluid containing small drops of another fluid, Proc. R. Soc. Lond. A 138 (834) (1932) 41–48 [22] M.V. Dagaonkar, H.J. Heeres, A.A.C.M. Beenackers, V.G. Pangarkar, Investigation of enhanced gas absorption by adsorptive bucky balls in a multiphase slurry reactor in the presence and absence of ultrasound, Ind. Eng. Chem. Res. 41 (6) (2002) 1496–1503 [23] O.J. Wimmers, J.M.H. Fortuin, The use of adhesion of catalyst particles to gas bubbles to achieve enhancement of gas absorption in slurry reactors—II. Determination of the enhancement in a bubble-containing slurry reactor, Chem. Eng. Sci. 43 (2) (1988) 313–319 |