[1] S.A. Cooper, K.K. Raman, J. Yin, Halo effect or fallen angel effect? Firm value consequences of greenhouse gas emissions and reputation for corporate social responsibility, J. Account. Public Policy 37 (3) (2018) 226–240. http://dx.doi.org/10.1016/j.jaccpubpol.2018.04.003 [2] S. Sengodan, R. Lan, J. Humphreys, D.W. Du, W. Xu, H.T. Wang, S.W. Tao, Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications, Renew. Sustain. Energy Rev. 82 (2018) 761–780. http://dx.doi.org/10.1016/j.rser.2017.09.071 [3] Kattel S, Ramírez PJ, Chen JG, Rodriguez JA, Liu P, Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts, Science 355 (6331) (2017) 1296–1299. https://www.ncbi.nlm.nih.gov/pubmed/28336665/ [4] S. Kawi, Y. Kathiraser, J. Ni, U. Oemar, Z.W. Li, E.T. Saw, Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane, ChemSusChem 8 (21) (2015) 3556–3575. https://www.ncbi.nlm.nih.gov/pubmed/26440576/ [5] A. Abdulrasheed, A.A. Jalil, Y. Gambo, M. Ibrahim, H.U. Hambali, M.Y. Shahul Hamid, A review on catalyst development for dry reforming of methane to syngas: Recent advances, Renew. Sustain. Energy Rev. 108 (2019) 175–193. http://dx.doi.org/10.1016/j.rser.2019.03.054 [6] S.P. Wen, M.L. Liang, J.M. Zou, S. Wang, X.D. Zhu, L. Liu, Z.J. Wang, Synthesis of a SiO2 nanofibre confined Ni catalyst by electrospinning for the CO2 reforming of methane, J. Mater. Chem. A 3 (25) (2015) 13299–13307. https://doi.org/10.1039/c5ta01699a [7] Y. Guo, J.M. Zou, X. Shi, P. Rukundo, Z.J. Wang, A Ni/CeO2-CDC-SiC catalyst with improved coke resistance In CO2 reforming of methane, ACS Sustain. Chem. Eng. 5 (3) (2017) 2330–2338. http://dx.doi.org/10.1021/acssuschemeng.6b02661 [8] X.L. Bai, G.M. Xie, Y. Guo, L. Tian, H.M. El-Hosainy, A.E. Awadallah, S.F. Ji, Z.J. Wang, A highly active Ni catalyst supported on Mg-substituted LaAlO3 for carbon dioxide reforming of methane, Catal. Today 368 (2021) 78–85. http://dx.doi.org/10.1016/j.cattod.2019.12.033 [9] X. Bai, G. Xie, Y. Guo, A highly active Ni catalyst supported on Mg-substituted LaAlO3 for carbon dioxide reforming of methane, Catalysis Today. 368 (2021) 78-85 [10] D. He, Y. Zhang, Z. Wang., Y. Mei, Y. Jiang, Bi-reforming of Methane with Carbon Dioxide and Steam on Nickel-Supported Binary Mg–Al Metal Oxide Catalysts, Energy & Fuels. 34(4) (2020) 4822-4827 [11] X.P. Liu, J.K. Yan, J. Mao, D.D. He, S. Yang, Y. Mei, Y.M. Luo, Inhibitor, co-catalyst, or intermetallic promoter? Probing the sulfur-tolerance of MoOx surface decoration on Ni/SiO2 during methane dry reforming, Appl. Surf. Sci. 548 (2021) 149231. http://dx.doi.org/10.1016/j.apsusc.2021.149231 [12] D. He, Y. Luo, Y. Tao, V Strezov, P Nelson, Y. Jiang, Promoter effects on nickel-supported magnesium oxide catalysts for the carbon dioxide reforming of methane. Energy & Fuels. 31(3) (2017) 2353-2359 [13] S.T. Xu, Y.C. Zhi, J.F. Han, W.N. Zhang, X.Q. Wu, T.T. Sun, Y.X. Wei, Z.M. Liu, Advances in catalysis for methanol-to-olefins conversion, Adv. Catal. 61 (2017) 37–122. http://dx.doi.org/10.1016/bs.acat.2017.10.002 [14] M. García-Diéguez, E. Finocchio, M.á. Larrubia, L.J. Alemany, G. Busca, Characterization of alumina-supported Pt, Ni and PtNi alloy catalysts for the dry reforming of methane, J. Catal. 274 (1) (2010) 11–20. http://dx.doi.org/10.1016/j.jcat.2010.05.020 [15] D.C. Carvalho, H.S.A. de Souza, J.M. Filho, A.C. Oliveira, A. Campos, é.R.C. Milet, F.F. de Sousa, E. Padron-Hernandez, A.C. Oliveira, A study on the modification of mesoporous mixed oxides supports for dry reforming of methane by Pt or Ru, Appl. Catal. A: Gen. 473 (2014) 132–145. http://dx.doi.org/10.1016/j.apcata.2013.12.031 [16] ?. ?zkara-Ayd?no?lu, A. Erhan Aksoylu, A comparative study on the kinetics of carbon dioxide reforming of methane over Pt-Ni/Al2O3 catalyst: Effect of Pt/Ni Ratio, Chem. Eng. J. 215-216 (2013) 542–549. http://dx.doi.org/10.1016/j.cej.2012.11.034 [17] N. El Hassan, M.N. Kaydouh, H. Geagea, H. El Zein, K. Jabbour, S. Casale, H. El Zakhem, P. Massiani, Low temperature dry reforming of methane on rhodium and cobalt based catalysts: Active phase stabilization by confinement in mesoporous SBA-15, Appl. Catal. A: Gen. 520 (2016) 114–121. http://dx.doi.org/10.1016/j.apcata.2016.04.014 [18] R.K. Singha, A. Yadav, A. Shukla, M. Kumar, R. Bal, Low temperature dry reforming of methane over Pd-CeO2 nanocatalyst, Catal. Commun. 92 (2017) 19–22. http://dx.doi.org/10.1016/j.catcom.2016.12.019 [19] X.Y. Li, D. Li, H. Tian, L. Zeng, Z.J. Zhao, J.L. Gong, Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles, Appl. Catal. B: Environ. 202 (2017) 683–694. http://dx.doi.org/10.1016/j.apcatb.2016.09.071 [20] J. Rostrup-Nielsen, D.L. Trimm, Mechanisms of carbon formation on nickel-containing catalysts, J. Catal. 48 (1–3) (1977) 155–165. http://dx.doi.org/10.1016/0021-9517(77)90087-2 [21] D. Baudouin, U. Rodemerck, F. Krumeich, A. de Mallmann, K.C. Szeto, H. Ménard, L. Veyre, J.P. Candy, P.B. Webb, C. Thieuleux, C. Copéret, Particle size effect in the low temperature reforming of methane by carbon dioxide on silica-supported Ni nanoparticles, J. Catal. 297 (2013) 27–34. http://dx.doi.org/10.1016/j.jcat.2012.09.011 [22] J.W. Han, J.S. Park, M.S. Choi, H. Lee, Uncoupling the size and support effects of Ni catalysts for dry reforming of methane, Appl. Catal. B: Environ. 203 (2017) 625–632. http://dx.doi.org/10.1016/j.apcatb.2016.10.069 [23] X.L. Yan, T. Hu, P. Liu, S. Li, B.R. Zhao, Q. Zhang, W.Y. Jiao, S. Chen, P.F. Wang, J.J. Lu, L.M. Fan, X.N. Deng, Y.X. Pan, Highly efficient and stable Ni/CeO2-SiO2 catalyst for dry reforming of methane: Effect of interfacial structure of Ni/CeO2 on SiO2, Appl. Catal. B: Environ. 246 (2019) 221–231. http://dx.doi.org/10.1016/j.apcatb.2019.01.070 [24] S. Aghamohammadi, M. Haghighi, M. Maleki, N. Rahemi, Sequential impregnation vs. Sol-gel synthesized Ni/Al2O3-CeO2 nanocatalyst for dry reforming of methane: Effect of synthesis method and support promotion, Mol. Catal. 431 (2017) 39–48. http://dx.doi.org/10.1016/j.mcat.2017.01.012 [25] L. Yao, J.Q. Zhu, X.X. Peng, D.M. Tong, C.W. Hu, Comparative study on the promotion effect of Mn and Zr on the stability of Ni/SiO2 catalyst for CO2 reforming of methane, Int. J. Hydrog. Energy 38 (18) (2013) 7268–7279. http://dx.doi.org/10.1016/j.ijhydene.2013.02.126 [26] T. Yabe, K. Mitarai, K. Oshima, S. Ogo, Y. Sekine, Low-temperature dry reforming of methane to produce syngas in an electric field over La-doped Ni/ZrO2 catalysts, Fuel Process. Technol. 158 (2017) 96–103. http://dx.doi.org/10.1016/j.fuproc.2016.11.013 [27] L. Yao, M.E. Galvez, C.W. Hu, P. Da Costa, Synthesis gas production via dry reforming of methane over manganese promoted nickel/cerium-zirconium oxide catalyst, Ind. Eng. Chem. Res. 57 (49) (2018) 16645–16656. http://dx.doi.org/10.1021/acs.iecr.8b04183 [28] M. Shah, S. Das, A.K. Nayak, P. Mondal, A. Bordoloi, Smart designing of metal-support interface for imperishable dry reforming catalyst, Appl. Catal. A: Gen. 556 (2018) 137–154. http://dx.doi.org/10.1016/j.apcata.2018.01.007 [29] M.C.J. Bradford, M. Albert Vannice, The role of metal-support interactions in CO2 reforming of CH4, Catal. Today 50 (1) (1999) 87–96. http://dx.doi.org/10.1016/S0920-5861(98)00465-9 [30] Z. Li, C. Wang, X.Z. Chen, X.X. Wang, X.Y. Li, Y. Yamauchi, X.J. Xu, J. Wang, C.F. Lin, D. Luo, X.F. Wang, X.S. Zhao, MoOx nanoparticles anchored on N-doped porous carbon as Li-ion battery electrode, Chem. Eng. J. 381 (2020) 122588. http://dx.doi.org/10.1016/j.cej.2019.122588 [31] X.Y. Li, B.N. Lin, H.B. Li, Q. Yu, Y. Ge, X. Jin, X.H. Liu, Y.H. Zhou, J.P. Xiao, Carbon doped hexagonal BN as a highly efficient metal-free base catalyst for Knoevenagel condensation reaction, Appl. Catal. B: Environ. 239 (2018) 254–259. http://dx.doi.org/10.1016/j.apcatb.2018.08.021 [32] K. Sun, L.F. Han, Y. Yang, X.H. Xia, Z.F. Yang, F.C. Wu, F.B. Li, Y.F. Feng, B.S. Xing, Application of hydrochar altered soil microbial community composition and the molecular structure of native soil organic carbon in a paddy soil, Environ Sci Technol 54 (5) (2020) 2715–2725. https://www.ncbi.nlm.nih.gov/pubmed/32003984/ [33] Z.W. Li, L.Y. Mo, Y. Kathiraser, S. Kawi, Yolk–satellite–shell structured Ni–Yolk@Ni@SiO2 nanocomposite: Superb catalyst toward methane CO2 reforming reaction, ACS Catal. 4 (5) (2014) 1526–1536. https://doi.org/10.1021/cs401027p [34] X.L. Zhu, P.P. Huo, Y.P. Zhang, D.G. Cheng, C.J. Liu, Structure and reactivity of plasma treated Ni/Al2O3 catalyst for CO2 reforming of methane, Appl. Catal. B: Environ. 81 (1–2) (2008) 132–140. http://dx.doi.org/10.1016/j.apcatb.2007.11.042 [35] S. Dekkar, S. Tezkratt, D. Sellam, K. Ikkour, K. Parkhomenko, A. Martinez-Martin, A.C. Roger, Dry reforming of methane over Ni-Al2O3 and Ni-SiO2 catalysts: Role of preparation methods, Catal. Lett. 150 (8) (2020) 2180–2199. http://dx.doi.org/10.1007/s10562-020-03120-3 [36] M.C.J. Bradford, M.A. Vannice, Catalytic reforming of methane with carbon dioxide over nickel catalysts I. Catalyst characterization and activity, Appl. Catal. A: Gen. 142 (1) (1996) 73–96. http://dx.doi.org/10.1016/0926-860X(96)00065-8 [37] K. Li, C.L. Pei, X.Y. Li, S. Chen, X.H. Zhang, R. Liu, J.L. Gong, Dry reforming of methane over La2O2CO3-modified Ni/Al2O3 catalysts with moderate metal support interaction, Appl. Catal. B: Environ. 264 (2020) 118448. http://dx.doi.org/10.1016/j.apcatb.2019.118448 [38] S.B. Wang, A comprehensive study on carbon dioxide reforming of methane over Ni/γ-Al2O3Catalysts, Ind. Eng. Chem. Res. 38 (7) (1999) 2615–2625. https://doi.org/10.1021/ie980489t [39] A.A. Lemonidou, I.A. Vasalos, Carbon dioxide reforming of methane over 5 wt.% Ni/CaO-Al2O3 catalyst, Appl. Catal. A: Gen. 228 (1–2) (2002) 227–235. http://dx.doi.org/10.1016/S0926-860X(01)00974-7 [40] M.N. Kaydouh, N. El Hassan, A. Davidson, S. Casale, H. El Zakhem, P. Massiani, Effect of the order of Ni and Ce addition in SBA-15 on the activity in dry reforming of methane, Comptes Rendus Chimie 18 (3) (2015) 293–301. http://dx.doi.org/10.1016/j.crci.2015.01.004 [41] M.K. Nikoo, N.A.S. Amin, Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation, Fuel Process. Technol. 92 (3) (2011) 678–691. http://dx.doi.org/10.1016/j.fuproc.2010.11.027 [42] R. D?bek, M. Motak, T. Grzybek, M. Galvez, P. da Costa, A short review on the catalytic activity of hydrotalcite-derived materials for dry reforming of methane, Catalysts 7 (12) (2017) 32. https://doi.org/10.3390/catal7010032 [43] A.L.A. Marinho, F.S. Toniolo, F.B. Noronha, F. Epron, D. Duprez, N. Bion, Highly active and stable Ni dispersed on mesoporous CeO2-Al2O3 catalysts for production of syngas by dry reforming of methane, Appl. Catal. B: Environ. 281 (2021) 119459. http://dx.doi.org/10.1016/j.apcatb.2020.119459 [44] Y. Kathiraser, U. Oemar, E.T. Saw, Z.W. Li, S. Kawi, Kinetic and mechanistic aspects for CO2 reforming of methane over Ni based catalysts, Chem. Eng. J. 278 (2015) 62–78. http://dx.doi.org/10.1016/j.cej.2014.11.143 [45] A.A. Tsyganenko, V.N. Filimonov, Infrared spectra of surface hydroxyl groups and crystalline structure of oxides, Spectrosc. Lett. 5 (12) (1972) 477–487 [46] He D, Zhang Y, Yang S, Investigation of the Isolated Cr (VI) Species in Cr/MCM-41 Catalysts and its Effect on Catalytic Activity for Dehydrogenation of Propane. ChemCatChem, 10 (23) (2018) 5434-5440. http://dx.doi.org/10.1080/00387017208065418 [47] K. Hadjiivanov, Identification and characterization of surface hydroxyl groups by infrared spectroscopy. Advances in Catalysis. Amsterdam: Elsevier, 2014: 99–318. https://doi.org/10.1016/b978-0-12-800127-1.00002-3 [48] Y. Zu, Y. Hui, Y.C. Qin, L. Zhang, H.H. Liu, X.T. Zhang, Z.S. Guo, L.J. Song, X.H. Gao, Facile fabrication of effective Cerium(III) hydroxylated species as adsorption active sites in CeY zeolite adsorbents towards ultra-deep desulfurization, Chem. Eng. J. 375 (2019) 122014. http://dx.doi.org/10.1016/j.cej.2019.122014 [49] Z.Y. Liu, D.C. Grinter, P.G. Lustemberg, T.D. Nguyen-Phan, Y.H. Zhou, S. Luo, I. Waluyo, E.J. Crumlin, D.J. Stacchiola, J. Zhou, J. Carrasco, H.F. Busnengo, M.V. Ganduglia-Pirovano, S.D. Senanayake, J.A. Rodriguez, Dry reforming of methane on a highly-active Ni-CeO2 catalyst: Effects of metal-support interactions on C-H bond breaking, Angew Chem Int Ed Engl 55 (26) (2016) 7455–7459. https://www.ncbi.nlm.nih.gov/pubmed/27144344/ [50] M.S. Li, A.C. van Veen, Tuning the catalytic performance of Ni-catalysed dry reforming of methane and carbon deposition via Ni-CeO2-x interaction, Appl. Catal. B: Environ. 237 (2018) 641–648. http://dx.doi.org/10.1016/j.apcatb.2018.06.032 [51] I. Luisetto, S. Tuti, C. Battocchio, S. Lo Mastro, A. Sodo, Ni/CeO2-Al2O3 catalysts for the dry reforming of methane: The effect of CeAlO3 content and nickel crystallite size on catalytic activity and coke resistance, Appl. Catal. A: Gen. 500 (2015) 12–22. http://dx.doi.org/10.1016/j.apcata.2015.05.004 [52] Y. Kathiraser, W. Thitsartarn, K. Sutthiumporn, S. Kawi, Inverse NiAl2O4 on LaAlO3-Al2O3: Unique catalytic structure for stable CO2 reforming of methane, J. Phys. Chem. C 117 (16) (2013) 8120–8130. https://doi.org/10.1021/jp401855x [53] J.T. Richardson, M. Lei, B. Turk, K. Forster, M.V. Twigg, Reduction of model steam reforming catalysts: NiO/α-Al2O3, Appl. Catal. A: Gen. 110 (2) (1994) 217–237. http://dx.doi.org/10.1016/0926-860X(94)80198-3 [54] N. Wang, K. Shen, L.H. Huang, X.P. Yu, W.Z. Qian, W. Chu, Facile route for synthesizing ordered mesoporous Ni–Ce–Al oxide materials and their catalytic performance for methane dry reforming to hydrogen and syngas, ACS Catal. 3 (7) (2013) 1638–1651. https://doi.org/10.1021/cs4003113 [55] M. Garza, N.P. Magtoto, J.A. Kelber, Characterization of oxidized Ni3Al(1 1 0) and interaction of the oxide film with water vapor, Surf. Sci. 519 (3) (2002) 259–268. http://dx.doi.org/10.1016/S0039-6028(02)02214-8 [56] C.T. Campbell, C.H. Peden, Chemistry. Oxygen vacancies and catalysis on ceria surfaces, Science 309 (5735) (2005) 713–714. https://www.ncbi.nlm.nih.gov/pubmed/16051777/ [57] C.E. Daza, A. Kiennemann, S. Moreno, R. Molina, Dry reforming of methane using Ni-Ce catalysts supported on a modified mineral clay, Appl. Catal. A: Gen. 364 (1–2) (2009) 65–74. http://dx.doi.org/10.1016/j.apcata.2009.05.029 [58] H. Eltejaei, H. Reza Bozorgzadeh, J. Towfighi, M. Reza Omidkhah, M. Rezaei, R. Zanganeh, A. Zamaniyan, A. Zarrin Ghalam, Methane dry reforming on Ni/Ce0.75Zr0.25O2-MgAl2O4 and Ni/Ce0.75Zr0.25O2-γ-alumina: Effects of support composition and water addition, Int. J. Hydrog. Energy 37 (5) (2012) 4107–4118. http://dx.doi.org/10.1016/j.ijhydene.2011.11.128 [59] N. Wang, W. Chu, T. Zhang, X.S. Zhao, Synthesis, characterization and catalytic performances of Ce-SBA-15 supported nickel catalysts for methane dry reforming to hydrogen and syngas, Int. J. Hydrog. Energy 37 (1) (2012) 19–30. http://dx.doi.org/10.1016/j.ijhydene.2011.03.138 [60] A. Albarazi, P. Beaunier, P. Da Costa, Hydrogen and syngas production by methane dry reforming on SBA-15 supported nickel catalysts: On the effect of promotion by Ce0.75Zr0.25O2 mixed oxide, Int. J. Hydrog. Energy 38 (1) (2013) 127–139. http://dx.doi.org/10.1016/j.ijhydene.2012.10.063 [61] A. Horváth, G. Stefler, O. Geszti, A. Kienneman, A. Pietraszek, L. Guczi, Methane dry reforming with CO2 on CeZr-oxide supported Ni, NiRh and NiCo catalysts prepared by Sol-gel technique: Relationship between activity and coke formation, Catal. Today 169 (1) (2011) 102–111. http://dx.doi.org/10.1016/j.cattod.2010.08.004 [62] L.L. Xu, Z.C. Miao, H.L. Song, L.J. Chou, CO2 reforming of CH4 over rare earth elements functionalized mesoporous Ni-Ln (Ln = Ce, La, Sm, Pr)-Al-O composite oxides, Int. J. Hydrog. Energy 39 (7) (2014) 3253–3268. http://dx.doi.org/10.1016/j.ijhydene.2013.12.077 [63] L.L. Xu, H.L. Song, L.J. Chou, Carbon dioxide reforming of methane over ordered mesoporous NiO-MgO-Al2O3 composite oxides, Appl. Catal. B: Environ. 108-109 (2011) 177–190. http://dx.doi.org/10.1016/j.apcatb.2011.08.028 [64] D. Yang, L. Wang, Y.Z. Sun, K.B. Zhou, Synthesis of one-dimensional Ce1–xYxO2–x/2 (0≤x≤1) solid solutions and their catalytic properties: The role of oxygen vacancies, J. Phys. Chem. C 114 (19) (2010) 8926–8932. https://doi.org/10.1021/jp912227p [65] J.R. McBride, K.C. Hass, B.D. Poindexter, W.H. Weber, Raman and X-ray studies of Ce1–xRExO2–y, where RE=La, pr, nd, eu, gd, and Tb, J. Appl. Phys. 76 (4) (1994) 2435–2441. https://doi.org/10.1063/1.357593 [66] L. Yao, J. Shi, H.L. Xu, W. Shen, C.W. Hu, Low-temperature CO2 reforming of methane on Zr-promoted Ni/SiO2 catalyst, Fuel Process. Technol. 144 (2016) 1–7. http://dx.doi.org/10.1016/j.fuproc.2015.12.009 |