中国化学工程学报 ›› 2022, Vol. 49 ›› Issue (9): 213-223.DOI: 10.1016/j.cjche.2021.11.026
Weilong Shi1,3, Jie Gao2, Haoran Sun3, Zhongyi Liu1, Feng Guo3, Lijing Wang1,4
收稿日期:
2021-08-28
修回日期:
2021-10-19
发布日期:
2022-10-19
通讯作者:
Zhongyi Liu,E-mail:liuzhongyi@zzu.edu.cn;Feng Guo,E-mail:gfeng0105@126.com;Lijing Wang,E-mail:wanglijing1989@126.com
基金资助:
Weilong Shi1,3, Jie Gao2, Haoran Sun3, Zhongyi Liu1, Feng Guo3, Lijing Wang1,4
Received:
2021-08-28
Revised:
2021-10-19
Published:
2022-10-19
Contact:
Zhongyi Liu,E-mail:liuzhongyi@zzu.edu.cn;Feng Guo,E-mail:gfeng0105@126.com;Lijing Wang,E-mail:wanglijing1989@126.com
Supported by:
摘要: The development of effective visible and near-infrared photocatalysts is highly promising in the current field of photocatalysis. Herein, carbon dots/ZnFe2O4 (CDs/ZFO) with coating zero dimensional (0D) CDs on the surface of three dimensional (3D) yolk-shell ZFO spheres was designed and synthesized via a self-templated solvothermal method. The as-prepared CDs/ZFO composites displayed outstanding visible and near-infrared photocatalytic degradation activity of tetracycline (TC), and the optimal 3% CDs/ZFO sample with loading 3% (mass) CDs displayed the highest photocatalytic TC degradation ability under visible light (79.5% within 120 min) and near-infrared light (41% within 120 min). The enhancement of photocatalytic activity for CDs/ZFO composite is mainly ascribed to the fact that 0D/3D yolk-shell CDs/ZFO structure not only effectively reflect the incident light to increase the utilization efficiency of solar light, but also utilize the up-conversion photoluminescence and electronic conductivity properties of CDs to broaden sunlight absorption range and promote separation and transfer of electron-hole pairs.
Weilong Shi, Jie Gao, Haoran Sun, Zhongyi Liu, Feng Guo, Lijing Wang. Highly efficient visible/near-infrared light photocatalytic degradation of antibiotic wastewater over 3D yolk-shell ZnFe2O4 supported 0D carbon dots with up-conversion property[J]. 中国化学工程学报, 2022, 49(9): 213-223.
Weilong Shi, Jie Gao, Haoran Sun, Zhongyi Liu, Feng Guo, Lijing Wang. Highly efficient visible/near-infrared light photocatalytic degradation of antibiotic wastewater over 3D yolk-shell ZnFe2O4 supported 0D carbon dots with up-conversion property[J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 213-223.
[1] Y.H. Yang, X.L. Li, C. Lu, W.H. Huang, G-C3N4 nanosheets coupled with TiO2 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity for hydrogen production, Catal. Lett. 149 (10) (2019) 2930-2939.http://dx.doi.org/10.1007/s10562-019-02805-8 [2] J.F. Niu, S.Y. Ding, L.W. Zhang, J.B. Zhao, C.H. Feng, Visible-light-mediated Sr-Bi2O3 photocatalysis of tetracycline:Kinetics, mechanisms and toxicity assessment, Chemosphere 93 (1) (2013) 1-8.https://pubmed.ncbi.nlm.nih.gov/23706401/ [3] H. Xu, Q. Ye, Q.G. Wang, P. Zhou, X.W. Huo, Y.Q. Wang, X. Huang, G.Y. Zhou, J. Zhang, Enhancement of organic contaminants degradation at low dosages of Fe(III) and H2O2 in g-C3N4 promoted Fe(III)/H2O2 system under visible light irradiation, Sep. Purif. Technol. 251 (2020) 117333.http://dx.doi.org/10.1016/j.seppur.2020.117333 [4] F. Guo, W.L. Shi, M.Y. Li, Y. Shi, H.B. Wen, 2D/2D Z-scheme heterojunction of CuInS2/g-C3N4 for enhanced visible-light-driven photocatalytic activity towards the degradation of tetracycline, Sep. Purif. Technol. 210 (2019) 608-615.http://dx.doi.org/10.1016/j.seppur.2018.08.055 [5] F. Guo, M.Y. Li, H.J. Ren, X.L. Huang, W.X. Hou, C. Wang, W.L. Shi, C.Y. Lu, Fabrication of p-n CuBi2O4/MoS2 heterojunction with nanosheets-on-microrods structure for enhanced photocatalytic activity towards tetracycline degradation, Appl. Surf. Sci. 491 (2019) 88-94.http://dx.doi.org/10.1016/j.apsusc.2019.06.158 [6] F. Guo, M.Y. Li, H.J. Ren, X.L. Huang, K.K. Shu, W.L. Shi, C.Y. Lu, Facile bottom-up preparation of Cl-doped porous g-C3N4 nanosheets for enhanced photocatalytic degradation of tetracycline under visible light, Sep. Purif. Technol. 228 (2019) 115770.http://dx.doi.org/10.1016/j.seppur.2019.115770 [7] Q. Zhu, Y.K. Sun, F.S. Na, J. Wei, S. Xu, Y.L. Li, F. Guo, Fabrication of CdS/titanium-oxo-cluster nanocomposites based on a Ti32 framework with enhanced photocatalytic activity for tetracycline hydrochloride degradation under visible light, Appl. Catal. B Environ. 254 (2019) 541-550.http://dx.doi.org/10.1016/j.apcatb.2019.05.006 [8] C.Y. Lu, F. Guo, Q.Z. Yan, Z.J. Zhang, D. Li, L.P. Wang, Y.H. Zhou, Hydrothermal synthesis of type II ZnIn2S4/BiPO4 heterojunction photocatalyst with dandelion-like microflower structure for enhanced photocatalytic degradation of tetracycline under simulated solar light, J. Alloys Compd. 811 (2019) 151976.http://dx.doi.org/10.1016/j.jallcom.2019.151976 [9] Q.Y. Tian, W.J. Yao, W. Wu, C.Z. Jiang, NIR light-activated upconversion semiconductor photocatalysts, Nanoscale horiz. 4 (1) (2019) 10-25.https://doi.org/10.1039/c8nh00154e [10] B.T. Sun, P.Y. Qiu, Z.Q. Liang, Y.J. Xue, X.L. Zhang, L. Yang, H.Z. Cui, J. Tian, The fabrication of 1D/2D CdS nanorod@Ti3C2 MXene composites for good photocatalytic activity of hydrogen generation and ammonia synthesis, Chem. Eng. J. 406 (2021) 127177.http://dx.doi.org/10.1016/j.cej.2020.127177 [11] W. Xiao, X.H. Wang, R.X. Liu, J. Wu, Quinuclidine and its derivatives as hydrogen-atom-transfer catalysts in photoinduced reactions, Chin. Chem. Lett. 32 (6) (2021) 1847-1856.http://dx.doi.org/10.1016/j.cclet.2021.02.009 [12] Z.Q. Liang, X.F. Meng, Y.J. Xue, X.Y. Chen, Y.L. Zhou, X.L. Zhang, H.Z. Cui, J. Tian, Facile preparation of metallic 1T phase molybdenum selenide as cocatalyst coupled with graphitic carbon nitride for enhanced photocatalytic H2 production, J. Colloid Interface Sci. 598 (2021) 172-180.http://dx.doi.org/10.1016/j.jcis.2021.04.066 [13] P.Y. Qiu, J.W. Wang, Z.Q. Liang, Y.J. Xue, Y.L. Zhou, X.L. Zhang, H.Z. Cui, G.Q. Cheng, J. Tian, The metallic 1T-WS2 as cocatalysts for promoting photocatalytic N2 fixation performance of Bi5O7Br nanosheets, Chin. Chem. Lett. 32 (11) (2021) 3501-3504.http://dx.doi.org/10.1016/j.cclet.2021.03.077 [14] J.J. Pan, F. Guo, H.R. Sun, Y.X. Shi, W.L. Shi, Nanodiamonds anchored on porous ZnSnO3 cubes as an efficient composite photocatalyst with improved visible-light photocatalytic degradation of tetracycline, Sep. Purif. Technol. 263 (2021) 118398.http://dx.doi.org/10.1016/j.seppur.2021.118398 [15] R.J. Guo, R. Tian, D.L. Shi, H. Li, H.Z. Liu, S-doped ZnSnO3 nanoparticles with narrow band gaps for photocatalytic wastewater treatment, ACS Appl. Nano Mater. 2 (12) (2019) 7755-7765.https://doi.org/10.1021/acsanm.9b01804 [16] G.D. Fan, X. Lin, Y.F. You, B.H. Du, X. Li, J. Luo, Magnetically separable ZnFe2O4/Ag3PO4/g-C3N4 photocatalyst for inactivation of Microcystis aeruginosa:Characterization, performance and mechanism, J. Hazard. Mater. 421 (2022) 126703.http://dx.doi.org/10.1016/j.jhazmat.2021.126703 [17] L.J. Wang, R.Q. Guan, Y.F. Qi, F.L. Zhang, P. Li, J.M. Wang, P. Qu, G. Zhou, W.L. Shi, Constructing Zn-P charge transfer bridge over ZnFe2O4-black phosphorus 3D microcavity structure:efficient photocatalyst design in visible-near-infrared region, J. Colloid Interface Sci. 600 (2021) 463-472.http://dx.doi.org/10.1016/j.jcis.2021.05.043 [18] E. Mrotek, S. Dudziak, I. Malinowska, D. Pelczarski, Z. Ryżyńska, A. Zielińska-Jurek, Improved degradation of etodolac in the presence of core-shell ZnFe2O4/SiO2/TiO2 magnetic photocatalyst, Sci. Total. Environ. 724 (2020) 138167.http://dx.doi.org/10.1016/j.scitotenv.2020.138167 [19] K.K. Das, S. Patnaik, B. Nanda, A.C. Pradhan, K. Parida, ZnFe2O4-decorated mesoporous Al2O3Modified MCM-41:a solar-light-active photocatalyst for the effective removal of phenol and Cr (VI) from water, ChemistrySelect 4 (5) (2019) 1806-1819.https://doi.org/10.1002/slct.201803209 [20] F.X. Wang, Y.L. Chen, R.S. Zhu, J.M. Sun, Novel synthesis of magnetic, porous C/ZnFe 2 O4 photocatalyst with enhanced activity under visible light based on the Fenton-like reaction, Dalton Trans. 46 (34) (2017) 11306-11317.https://pubmed.ncbi.nlm.nih.gov/28805864/ [21] W.Q. Zhang, M. Wang, W.J. Zhao, B.Q. Wang, Magnetic composite photocatalyst ZnFe2O4/BiVO4:synthesis, characterization, and visible-light photocatalytic activity, Dalton Trans. 42 (43) (2013) 15464.https://doi.org/10.1039/c3dt52068d [22] T.H. Yu, W.Y. Cheng, K.J. Chao, S.Y. Lu, ZnFe2O4 decorated CdS nanorods as a highly efficient, visible light responsive, photochemically stable, magnetically recyclable photocatalyst for hydrogen generation, Nanoscale 5 (16) (2013) 7356-7360.https://pubmed.ncbi.nlm.nih.gov/23824310/ [23] Y.J. Yao, J.C. Qin, H. Chen, F.Y. Wei, X.T. Liu, J.L. Wang, S.B. Wang, One-pot approach for synthesis of N-doped TiO2/ZnFe2O4 hybrid as an efficient photocatalyst for degradation of aqueous organic pollutants, J. Hazard. Mater. 291 (2015) 28-37.http://dx.doi.org/10.1016/j.jhazmat.2015.02.042 [24] F. Guo, X.L. Huang, Z.H. Chen, Y.X. Shi, H.R. Sun, X.F. Cheng, W.L. Shi, L.Z. Chen, Formation of unique hollow ZnSnO3@ZnIn2S4 core-shell heterojunction to boost visible-light-driven photocatalytic water splitting for hydrogen production, J. Colloid Interface Sci. 602 (2021) 889-897.http://dx.doi.org/10.1016/j.jcis.2021.06.074 [25] M.L. Ma, Y.Y. Yang, W.T. Li, Y. Ma, Z.Y. Tong, W.B. Huang, L. Chen, G.L. Wu, H.L. Wang, P. Lyu, Synthesis of yolk-shell structure Fe3O4/P(MAA-MBAA)-PPy/Au/void/TiO2 magnetic microspheres as visible light active photocatalyst for degradation of organic pollutants, J. Alloys Compd. 810 (2019) 151807.http://dx.doi.org/10.1016/j.jallcom.2019.151807 [26] X.N. Gao, X.Y. Wang, Z. Yang, Y.H. Shen, A.J. Xie, A novel bi-functional SiO2@TiO2/CDs nanocomposite with yolk-shell structure as both efficient SERS substrate and photocatalyst, Appl. Surf. Sci. 475 (2019) 135-142.http://dx.doi.org/10.1016/j.apsusc.2018.12.250 [27] W.N. Wang, C.X. Huang, C.Y. Zhang, M.L. Zhao, J. Zhang, H.J. Chen, Z.B. Zha, T.T. Zhao, H.S. Qian, Controlled synthesis of upconverting nanoparticles/ZnxCd1-xS yolk-shell nanoparticles for efficient photocatalysis driven by NIR light, Appl. Catal. B Environ. 224 (2018) 854-862.http://dx.doi.org/10.1016/j.apcatb.2017.11.037 [28] Z.F. Jiang, C.Z. Zhu, W.M. Wan, K. Qian, J.M. Xie, Constructing graphite-like carbon nitride modified hierarchical yolk-shell TiO2 spheres for water pollution treatment and hydrogen production, J. Mater. Chem. A 4 (5) (2016) 1806-1818.https://doi.org/10.1039/c5ta09919f [29] F. Guo, X.L. Huang, Z.H. Chen, H.R. Sun, W.L. Shi, Investigation of visible-light-driven photocatalytic tetracycline degradation via carbon dots modified porous ZnSnO3 cubes:mechanism and degradation pathway, Sep. Purif. Technol. 253 (2020) 117518.http://dx.doi.org/10.1016/j.seppur.2020.117518 [30] Q. Zhou, W.Y. Huang, C. Xu, X. Liu, K. Yang, D. Li, Y. Hou, D.D. Dionysiou, Novel hierarchical carbon quantum dots-decorated BiOCl nanosheet/carbonized eggshell membrane composites for improved removal of organic contaminants from water via synergistic adsorption and photocatalysis, Chem. Eng. J. 420 (2021) 129582.http://dx.doi.org/10.1016/j.cej.2021.129582 [31] J. Di, J.X. Xia, X.L. Chen, M.X. Ji, S. Yin, Q. Zhang, H.M. Li, Tunable oxygen activation induced by oxygen defects in nitrogen doped carbon quantum dots for sustainable boosting photocatalysis, Carbon 114 (2017) 601-607.http://dx.doi.org/10.1016/j.carbon.2016.12.030 [32] W.L. Shi, F. Guo, M.Y. Li, Y. Shi, M.F. Wu, Y.B. Tang, Enhanced visible-light-driven photocatalytic H2 evolution on the novel nitrogen-doped carbon dots/CuBi2O4 microrods composite, J. Alloys Compd. 775 (2019) 511-517.http://dx.doi.org/10.1016/j.jallcom.2018.10.095 [33] M.Y. Li, C.J. Ma, G.L. Wang, X.F. Zhang, X.L. Dong, H.C. Ma, Controlling the up-conversion photoluminescence property of carbon quantum dots (CQDs) by modifying its surface functional groups for enhanced photocatalytic performance of CQDs/BiVO4 under a broad-spectrum irradiation, Res. Chem. Intermed. 47 (8) (2021) 3469-3485.http://dx.doi.org/10.1007/s11164-021-04459-x [34] S.Q. Huang, Q. Zhang, P.Y. Liu, S.J. Ma, B. Xie, K. Yang, Y.P. Zhao, Novel up-conversion carbon quantum dots/α-FeOOH nanohybrids eliminate tetracycline and its related drug resistance in visible-light responsive Fenton system, Appl. Catal. B Environ. 263 (2020) 118336.http://dx.doi.org/10.1016/j.apcatb.2019.118336 [35] X. Zhang, X.H. Li, C.L. Shao, J.H. Li, M.Y. Zhang, P. Zhang, K.X. Wang, N. Lu, Y.C. Liu, One-dimensional hierarchical heterostructures of In2S3 nanosheets on electrospun TiO2 nanofibers with enhanced visible photocatalytic activity, J. Hazard. Mater. 260 (2013) 892-900.http://dx.doi.org/10.1016/j.jhazmat.2013.06.024 [36] W.L. Shi, F. Guo, M.Y. Li, Y. Shi, Y.B. Tang, N-doped carbon dots/CdS hybrid photocatalyst that responds to visible/near-infrared light irradiation for enhanced photocatalytic hydrogen production, Sep. Purif. Technol. 212 (2019) 142-149.http://dx.doi.org/10.1016/j.seppur.2018.11.028 [37] Z.J. Guan, P. Wang, Q.Y. Li, G.Q. Li, J.J. Yang, Constructing a ZnIn 2 S4 nanoparticle/MoS 2-RGO nanosheet 0D/2D heterojunction for significantly enhanced visible-light photocatalytic H2 production, Dalton Trans. 47 (19) (2018) 6800-6807.https://pubmed.ncbi.nlm.nih.gov/29722778/ [38] J.G. Hou, C. Yang, H.J. Cheng, Z. Wang, S.Q. Jiao, H.M. Zhu, Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4 heterostructures for efficient photocatalytic H2 production, Phys. Chem. Chem. Phys. 15 (37) (2013) 15660-15668.https://pubmed.ncbi.nlm.nih.gov/23942887/ [39] W.L. Shi, F. Guo, H.B. Wang, M.M. Han, H. Li, S.L. Yuan, H. Huang, Y. Liu, Z.H. Kang, Carbon dots decorated the exposing high-reactive (111) facets CoO octahedrons with enhanced photocatalytic activity and stability for tetracycline degradation under visible light irradiation, Appl. Catal. B Environ. 219 (2017) 36-44.http://dx.doi.org/10.1016/j.apcatb.2017.07.019 [40] W.L. Shi, F. Guo, H.B. Wang, C.G. Liu, Y.J. Fu, S.L. Yuan, H. Huang, Y. Liu, Z.H. Kang, Carbon dots decorated magnetic ZnFe2O4 nanoparticles with enhanced adsorption capacity for the removal of dye from aqueous solution, Appl. Surf. Sci. 433 (2018) 790-797.http://dx.doi.org/10.1016/j.apsusc.2017.10.099 [41] H.K. Zhu, M.H. Fang, Z.H. Huang, Y.G. Liu, K. Chen, C. Tang, M. Wang, L.N. Zhang, X.W. Wu, Novel carbon-incorporated porous ZnFe2O4nanospheres for enhanced photocatalytic hydrogen generation under visible light irradiation, RSC Adv. 6 (61) (2016) 56069-56076.https://doi.org/10.1039/c6ra05098k [42] W. Liu, Y.Y. Li, F.Y. Liu, W. Jiang, D.D. Zhang, J.L. Liang, Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C 3 N4:Mechanisms, degradation pathway and DFT calculation, Water Res. 151 (2019) 8-19.https://pubmed.ncbi.nlm.nih.gov/30579052/ [43] Y.S. Fu, X. Wang, Magnetically separable ZnFe2O4-graphene catalyst and its high photocatalytic performance under visible light irradiation, Ind. Eng. Chem. Res. 50 (12) (2011) 7210-7218.http://dx.doi.org/10.1021/ie200162a [44] W.L. Shi, H.C. Lv, S.L. Yuan, H. Huang, Y. Liu, Z.H. Kang, Near-infrared light photocatalytic ability for degradation of tetracycline using carbon dots modified Ag/AgBr nanocomposites, Sep. Purif. Technol. 174 (2017) 75-83.http://dx.doi.org/10.1016/j.seppur.2016.10.005 [45] Y. Hou, X.Y. Li, Q.D. Zhao, X. Quan, G.H. Chen, Electrochemical method for synthesis of a ZnFe2O4/TiO2 composite nanotube array modified electrode with enhanced photoelectrochemical activity, Adv. Funct. Mater. 20 (13) (2010) 2165-2174.https://doi.org/10.1002/adfm.200902390 [46] Y. Hou, F. Zuo, A. Dagg, P.Y. Feng, A three-dimensional branched cobalt-doped α-Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation, Angew. Chem. Int. Ed Engl. 52 (4) (2013) 1248-1252.https://pubmed.ncbi.nlm.nih.gov/23225666/ [47] H. Kong, J. Song, J. Jang, One-step fabrication of magnetic γ-Fe2O3/polyrhodanine nanoparticles using in situ chemical oxidation polymerization and their antibacterial properties, Chem. Commun. 46 (36) (2010) 6735.https://doi.org/10.1039/c0cc00736f [48] P.L. Liang, L.Y. Yuan, H. Deng, X.C. Wang, L. Wang, Z.J. Li, S.Z. Luo, W.Q. Shi, Photocatalytic reduction of uranium(VI) by magnetic ZnFe2O4 under visible light, Appl. Catal. B Environ. 267 (2020) 118688.http://dx.doi.org/10.1016/j.apcatb.2020.118688 [49] H.L. Zhang, C.X. Zhu, G.H. Zhang, M. Li, Q.J. Tang, J.L. Cao, Palladium modified ZnFe2O4/g-C3N4 nanocomposite as an efficiently magnetic recycling photocatalyst, J. Solid State Chem. 288 (2020) 121389.http://dx.doi.org/10.1016/j.jssc.2020.121389 [50] A. Velumani, P. Sengodan, P. Arumugam, R. Rajendran, S. Santhanam, M. Palanisamy, Carbon quantum dots supported ZnO sphere based photocatalyst for dye degradation application, Curr. Appl. Phys. 20 (10) (2020) 1176-1184.http://dx.doi.org/10.1016/j.cap.2020.07.016 [51] H.R. Sun, F. Guo, J.J. Pan, W. Huang, K. Wang, W.L. Shi, One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process, Chem. Eng. J. 406 (2021) 126844.http://dx.doi.org/10.1016/j.cej.2020.126844 [52] F. Guo, H.R. Sun, X.L. Huang, W.L. Shi, C. Yan, Fabrication of TiO 2/high-crystalline g-C 3 N4 composite with enhanced visible-light photocatalytic performance for tetracycline degradation, J. Chem. Technol. Biotechnol. (2020) jctb.6384.https://doi.org/10.1002/jctb.6384 [53] F. Guo, L.J. Wang, H.R. Sun, M.Y. Li, W.L. Shi, High-efficiency photocatalytic water splitting by a N-doped porous g-C3N4 nanosheet polymer photocatalyst derived from urea and N, N-dimethylformamide, Inorg. Chem. Front. 7 (8) (2020) 1770-1779.https://doi.org/10.1039/d0qi00117a [54] F. Guo, H.R. Sun, L. Cheng, W.L. Shi, Oxygen-defective ZnO porous nanosheets modified by carbon dots to improve their visible-light photocatalytic activity and gain mechanistic insight, New J. Chem. 44 (26) (2020) 11215-11223.https://doi.org/10.1039/d0nj02268c [55] W.L. Shi, S. Yang, H.R. Sun, J.B. Wang, X. Lin, F. Guo, J.Y. Shi, Carbon dots anchored high-crystalline g-C3N4 as a metal-free composite photocatalyst for boosted photocatalytic degradation of tetracycline under visible light, J. Mater. Sci. 56 (3) (2021) 2226-2240.http://dx.doi.org/10.1007/s10853-020-05436-2 [56] W.L. Shi, J.B. Wang, S. Yang, X. Lin, F. Guo, J.Y. Shi, Fabrication of a ternary carbon dots/CoO/g-C 3 N4 nanocomposite photocatalyst with enhanced visible-light-driven photocatalytic hydrogen production, J. Chem. Technol. Biotechnol. 95 (8) (2020) 2129-2138.https://doi.org/10.1002/jctb.6398 [57] F. Guo, Z.H. Chen, X.L. Huang, L.W. Cao, X.F. Cheng, W.L. Shi, L.Z. Chen, Cu3P nanoparticles decorated hollow tubular carbon nitride as a superior photocatalyst for photodegradation of tetracycline under visible light, Sep. Purif. Technol. 275 (2021) 119223.http://dx.doi.org/10.1016/j.seppur.2021.119223 [58] Z.H. Chen, F. Guo, H.R. Sun, Y.X. Shi, W.L. Shi, Well-designed three-dimensional hierarchical hollow tubular g-C3N4/ZnIn2S4 nanosheets heterostructure for achieving efficient visible-light photocatalytic hydrogen evolution, J. Colloid Interface Sci. 607 (2022) 1391-1401.http://dx.doi.org/10.1016/j.jcis.2021.09.095 [59] F. Guo, X.L. Huang, Z.H. Chen, H.R. Sun, L.Z. Chen, Prominent co-catalytic effect of CoP nanoparticles anchored on high-crystalline g-C3N4 nanosheets for enhanced visible-light photocatalytic degradation of tetracycline in wastewater, Chem. Eng. J. 395 (2020) 125118.http://dx.doi.org/10.1016/j.cej.2020.125118 [60] W.L. Shi, M.Y. Li, H.J. Ren, F. Guo, X.L. Huang, Y. Shi, Y.B. Tang, Construction of a 0D/1D composite based on Au nanoparticles/CuBi2O4 microrods for efficient visible-light-driven photocatalytic activity, Beilstein J. Nanotechnol. 10 (2019) 1360-1367.https://doi.org/10.3762/bjnano.10.134 [61] S.H. Wang, L. Zhao, W. Huang, H. Zhao, J.Y. Chen, Q. Cai, X. Jiang, C.Y. Lu, W.L. Shi, Solvothermal synthesis of CoO/BiVO4 p-n heterojunction with micro-nano spherical structure for enhanced visible light photocatalytic activity towards degradation of tetracycline, Mater. Res. Bull. 135 (2021) 111161.http://dx.doi.org/10.1016/j.materresbull.2020.111161 [62] F. Guo, X.L. Huang, Z.H. Chen, L.W. Cao, X.F. Cheng, L.Z. Chen, W.L. Shi, Construction of Cu3P-ZnSnO3-g-C3N4 p-n-n heterojunction with multiple built-in electric fields for effectively boosting visible-light photocatalytic degradation of broad-spectrum antibiotics, Sep. Purif. Technol. 265 (2021) 118477.http://dx.doi.org/10.1016/j.seppur.2021.118477 [63] E.L. Liu, X. Lin, Y.Z. Hong, L. Yang, B.F. Luo, W.L. Shi, J.Y. Shi, Rational copolymerization strategy engineered C self-doped g-C3N4 for efficient and robust solar photocatalytic H2 evolution, Renew. Energy 178 (2021) 757-765.http://dx.doi.org/10.1016/j.renene.2021.06.066 [64] F. Guo, L.J. Wang, H.R. Sun, M.Y. Li, W.L. Shi, X. Lin, A one-pot sealed ammonia self-etching strategy to synthesis of N-defective g-C3N4 for enhanced visible-light photocatalytic hydrogen, Int. J. Hydrog. Energy 45 (55) (2020) 30521-30532.http://dx.doi.org/10.1016/j.ijhydene.2020.08.080 [65] X. Tang, Y. Yu, C.C. Ma, G.S. Zhou, X.L. Liu, M.S. Song, Z.Y. Lu, L. Liu, The fabrication of a biomass carbon quantum dot-Bi2WO6 hybrid photocatalyst with high performance for antibiotic degradation, New J. Chem. 43 (47) (2019) 18860-18867.https://doi.org/10.1039/c9nj04764f [66] H. Li, H.B. Wang, J.Q. Guo, S. Ye, W.L. Shi, X. Peng, J. Song, J.L. Qu, Long-wavelength excitation of carbon dots as the probe for real-time imaging of the living-cell cycle process, Sens. Actuat. B Chem. 311 (2020) 127891.http://dx.doi.org/10.1016/j.snb.2020.127891 [67] N. Roy, Y. Shibano, C. Terashima, K.I. Katsumata, K. Nakata, T. Kondo, M. Yuasa, A. Fujishima, Ionic-liquid-assisted selective and controlled electrochemical CO2 reduction at Cu-modified boron-doped diamond electrode, ChemElectroChem 3 (7) (2016) 1044-1047.https://doi.org/10.1002/celc.201600105 [68] G.D. Jiang, K. Geng, Y. Wu, Y.H. Han, X.D. Shen, High photocatalytic performance of ruthenium complexes sensitizing g-C3N4/TiO2 hybrid in visible light irradiation, Appl. Catal. B Environ. 227 (2018) 366-375.http://dx.doi.org/10.1016/j.apcatb.2018.01.034 [69] H. Jin, R.J. Gui, J. Sun, Y.F. Wang, Retraction notice to "Facilely self-assembled magnetic nanoparticles/aptamer/carbon dots nanocomposites for highly sensitive up-conversion fluorescence turn-on detection of tetrodotoxin" Talanta 176 (2018) 277-283, Talanta 204 (2019) 882.http://dx.doi.org/10.1016/j.talanta.2019.06.097 [70] J.J. Pan, F. Guo, H.R. Sun, M.Y. Li, X.F. Zhu, L.L. Gao, W.L. Shi, Nanodiamond decorated 2D hexagonal Fe2O3 nanosheets with a Z-scheme photogenerated electron transfer path for enhanced photocatalytic activity, J. Mater. Sci. 56 (11) (2021) 6663-6675.http://dx.doi.org/10.1007/s10853-020-05700-5 [71] Y. Hu, K. Chen, Y.L. Li, J.Y. He, K.S. Zhang, T. Liu, W. Xu, X.J. Huang, L.T. Kong, J.H. Liu, Morphology-tunable WMoO nanowire catalysts for the extremely efficient elimination of tetracycline:kinetics, mechanisms and intermediates, Nanoscale 11 (3) (2019) 1047-1057.https://pubmed.ncbi.nlm.nih.gov/30569932/ [72] Z.Y. Lu, Z.H. Yu, J.B. Dong, M.S. Song, Y. Liu, X.L. Liu, Z.F. Ma, H. Su, Y.S. Yan, P.W. Huo, Facile microwave synthesis of a Z-scheme imprinted ZnFe2O4/Ag/PEDOT with the specific recognition ability towards improving photocatalytic activity and selectivity for tetracycline, Chem. Eng. J. 337 (2018) 228-241.http://dx.doi.org/10.1016/j.cej.2017.12.115 |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||