[1] T. Sakakura, J.C. Choi, H. Yasuda, Transformation of carbon dioxide, Chem. Rev. 107 (6) (2007) 2365-2387 [2] J.F. Luo, I. Larrosa, C-H carboxylation of aromatic compounds through CO2 fixation, ChemSusChem 10 (17) (2017) 3317-3332 [3] J.T. Hong, M. Li, J.N. Zhang, B.Q. Sun, F.Y. Mo, C-H bond carboxylation with carbon dioxide, ChemSusChem 12 (1) (2019) 6-39 [4] Liu A H, Yu B, He L N. Catalytic conversion of carbon dioxide to carboxylic acid derivatives. Greenhouse Gases-Science and Technology, 2015, 5(1):17-33 [5] G.A. Olah, B. Török, J.P. Joschek, I. Bucsi, P.M. Esteves, G. Rasul, G.K. Surya Prakash, Efficient chemoselective carboxylation of aromatics to arylcarboxylic acids with a superelectrophilically activated carbon dioxide-Al(2)Cl(6)/Al system, J. Am. Chem. Soc. 124 (38) (2002) 11379-11391 [6] P. Munshi, E.J. Beckman, Effect of incubation of CO2 and lewis acid on the generation of toluic acid from toluene and CO2, Ind. Eng. Chem. Res. 48 (2) (2009) 1059-1062. Doi:10.1021/ie801524e [7] P. Munshi, E.J. Beckman, S. Padmanabhan, Combined influence of fluorinated solvent and base in Friedel-Crafts reaction of toluene and CO2, Ind. Eng. Chem. Res. 49 (14) (2010) 6678-6682. Doi:10.1021/ie100533c [8] K. Nemoto, H. Yoshida, N. Egusa, N. Morohashi, T. Hattori, Direct carboxylation of arenes and halobenzenes with CO2 by the combined use of AlBr3 and R3SiCl, J. Org. Chem. 75 (22) (2010) 7855-7862 [9] K. Nemoto, S. Onozawa, N. Egusa, N. Morohashi, T. Hattori, Carboxylation of indoles and pyrroles with CO2 in the presence of dialkylaluminum halides, Tetrahedron Lett. 50 (31) (2009) 4512-4514.Doi:10.1016/j.tetlet.2009.05.076 [10] K. Nemoto, S. Onozawa, M. Konno, N. Morohashi, T. Hattori, Direct carboxylation of thiophenes and benzothiophenes with the aid of EtAlCl2, Bull. Chem. Soc. Jpn. 85 (3) (2012) 369-371. Doi:10.1246/bcsj.20110335 [11] S. Tanaka, K. Watanabe, Y. Tanaka, T. Hattori, EtAlCl2/2, 6-disubstituted pyridine-mediated carboxylation of alkenes with carbon dioxide, Org. Lett. 18 (11) (2016) 2576-2579 [12] X.B. Zhang, Z.M. Cheng, Performance of combined use of chlorosilanes and AlCl3 in the carboxylation of toluene with CO2, Aiche J. 63 (2017) 185-191.Doi:10.1002/AIC.15519 [13] I.I. Boogaerts, S.P. Nolan, Carboxylation of C-H bonds using N-heterocyclic carbene gold(I) complexes, J. Am. Chem. Soc. 132 (26) (2010) 8858-8859 [14] I.I. Boogaerts, G.C. Fortman, M.R. Furst, C.S. Cazin, S.P. Nolan, Carboxylation of N-H/C-H bonds using N-heterocyclic carbene copper(I) complexes, Angewandte Chemie Int. Ed Engl. 49 (46) (2010) 8674-8677 [15] W.J. Yoo, M.G. Capdevila, X. Du, S. Kobayashi, Base-mediated carboxylation of unprotected indole derivatives with carbon dioxide, Org. Lett. 14 (20) (2012) 5326-5329 [16] Fenner S, Ackermann L. C-H carboxylation of heteroarenes with ambient CO2. Green Chemistry, 2016, 18(13):3804-3807 [17] M. Shigeno, K. Hanasaka, K. Sasaki, K. Nozawa-Kumada, Y. Kondo, Direct carboxylation of electron-rich heteroarenes promoted by LiO-tBu with CsF and[18]crown-6, Chemistry 25 (13) (2019) 3235-3239 [18] M. Shigeno, K. Sasaki, K. Nozawa-Kumada, Y. Kondo, Double-carboxylation of two C-H bonds in 2-alkylheteroarenes using LiO- t-bu/CsF, Org Lett 21 (12) (2019) 4515-4519 [19] Shigeno M, Tohara I, Kumada-Nozawa K, Kondo Y. Direct C-2 carboxylation of 3-substituted indoles using a combined Brønsted base consisting of LiO-tBu/CsF/18-crown-6. European Journal of Organic chemistry, 2020, 2020(13):1987-1991 [20] O. Vechorkin, N. Hirt, X.L. Hu, Carbon dioxide as the C1 source for direct C-H functionalization of aromatic heterocycles, Org. Lett. 12 (15) (2010) 3567-3569 [21] A. Banerjee, G.R. Dick, T. Yoshino, M.W. Kanan, Carbon dioxide utilization via carbonate-promoted C-H carboxylation, Nature 531 (7593) (2016) 215-219 [22] Dick G R, Frankhouser A D, Banerjee A, Kanan M W. A scalable carboxylation route to furan-2,5-dicarboxylic acid. Green Chemistry, 2017, 19(13):2966-2972 [23] A.W. Lankenau, M.W. Kanan, Polyamide monomers via carbonate-promoted C-H carboxylation of furfurylamine, Chem. Sci. 11 (1) (2019) 248-252 [24] A.D. Frankhouser, M.W. Kanan, Phase behavior that enables solvent-free carbonate-promoted furoate carboxylation, J. Phys. Chem. Lett. 11 (18) (2020) 7544-7551 [25] K. Shen, Y. Fu, J.N. Li, L. Liu, Q.X. Guo, What are the pKa values of C-H bonds in aromatic heterocyclic compounds in DMSO? Tetrahedron 63 (7) (2007) 1568-1576.Doi:10.1016/j.tet.2006.12.032 [26] Y. Hiroshi, O. Tetsuhiko, Preparation of Thiophenecarboxylic Acid, JP Pat., JP58029783 (1983). [27] C. G. Johnson, J.W. Schick, Production of Thiophenecarboxylic Acid, US Pat., US 2492645 (1949). [28] H.C. Guo, The environmental-friendly synthesis of 2-thiophenecarboxylic acid, Chem. Intermed. (2007) (12)13-14, 7, 20.(in Chinese) [29] A. Banerjee, M.W. Kanan, Carbonate-promoted hydrogenation of carbon dioxide to multicarbon carboxylates, ACS Cent. Sci. 4 (5) (2018) 606-613 [30] M. Lafrance, K. Fagnou, Palladium-catalyzed benzene arylation:incorporation of catalytic pivalic acid as a proton shuttle and a key element in catalyst design, J. Am. Chem. Soc. 128 (51) (2006) 16496-16497 [31] D.B. Zhao, W.D. Wang, S. Lian, F. Yang, J.B. Lan, J.S. You, Phosphine-free, palladium-catalyzed arylation of heterocycles through C-H bond activation with pivalic acid as a cocatalyst, Chemistry 15 (6) (2009) 1337-1340 [32] H.Y. Xu, K. Muto, J. Yamaguchi, C.Y. Zhao, K. Itami, D.G. Musaev, Key mechanistic features of Ni-catalyzed C-H/C-O biaryl coupling of azoles and naphthalen-2-yl pivalates, J. Am. Chem. Soc. 136 (42) (2014) 14834-14844 [33] H.Y. Xu, K. Muto, J. Yamaguchi, C.Y. Zhao, K. Itami, D.G. Musaev, Key mechanistic features of Ni-catalyzed C-H/C-O biaryl coupling of azoles and naphthalen-2-yl pivalates, J. Am. Chem. Soc. 136 (42) (2014) 14834-14844 [34] Y.G. Wang, C.Y. Guo, J. Shen, Y.Q. Sun, Y.X. Niu, P. Li, G. Liu, X.Y. Wei, A sustainable and green route to furan-2, 5-dicarboxylic acid by direct carboxylation of 2-furoic acid and CO2, J. CO2 Util. 48 (2021) 101524.Doi:10.1016/j.jcou.2021.101524 [35] Lide,D. R.; CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, 2010 [36] Alharis, R. A.; Mcmullin, C. L.; Davies, D. L.; Singh, K.; Macgregor, S. A. The importance of kinetic and thermodynamic control when assessing mechanisms of carboxylate-assisted C-H activation. Journal of the American Chemical Society, 2014, 136, 4575-458 [37] E. Anslyn, D. Dougherty, Modern Physical Organic Chemistry, University Science Book, Melville, NewYork,2006. [38] D. García-López, L. Pavlovic, K.H. Hopmann, To bind or not to bind:mechanistic insights into C-CO2 bond formation with late transition metals, Organometallics 39 (8) (2020) 1339-1347.Doi:10.1021/acs.organomet.0c00090 [39] Wolters, L. P.; Bickelhaupt, F. M. The activation strain model and molecular orbital theory. WIREs Computational Molecular Science, 2015, 5:324-343 [40] F.M. Bickelhaupt, K.N. Houk, Analyzing reaction rates with the distortion/interaction-activation strain model, Angew. Chem. Int. Ed Engl. 56 (34) (2017) 10070-10086 [41] Green, A. G.; Liu, P.; Merlic, C. A.; Houk, K. N. Distortion/interaction analysis reveals the origins of selectivities in Iridium-catalyzed C-H borylation of substituted arenes and 5-membered heterocycles. Journal of the American Chemical Society, 2014, 136, 4575-458 [42] T.M. Porter, M.W. Kanan, Carbonate-promoted C-H carboxylation of electron-rich heteroarenes, Chem. Sci. 11 (43) (2020) 11936-11944 [43] T. Lu, Q.X. Chen, Interaction region indicator:a simple real space function clearly revealing both chemical bonds and weak interactions, Chemistry-Methods, 1 (2021) 231-239. www.semanticscholar.org/paper/b334b902ed2c2443d70dc4128d5b5fe5af277d06 [44] T. Lu, F.W. Chen, Multiwfn:a multifunctional wavefunction analyzer, J. Comput. Chem. 33 (5) (2012) 580-592 |