[1] M.F. Malone, M.F. Doherty, Reactive distillation, Ind. Eng. Chem. Res. 39 (11) (2000) 3953-3957 [2] A. Stankiewicz, Reactive separations for process intensification:An industrial perspective, Chem. Eng. Process.:Process. Intensif. 42 (3) (2003) 137-144 [3] H.G. Schoenmakers, B. Bessling, Reactive and catalytic distillation from an industrial perspective, Chem. Eng. Process.:Process. Intensif. 42 (3) (2003) 145-155 [4] G.J. Harmsen, Reactive distillation:The front-runner of industrial process intensification:A full review of commercial applications, research, scale-up, design and operation, Chem. Eng. Process.:Process. Intensif. 46 (9) (2007) 774-780 [5] K. Sundmacher, A. Kienle, Reactive Distillation:Status and Future Directions. Wiley-VCH Verlag Gmbh& Co. KGaA, Weinheim, 2002 [6] H. Subawalla, J.R. Fair, Design guidelines for solid-catalyzed reactive distillation systems, Ind. Eng. Chem. Res. 38 (10) (1999) 3696-3709 [7] R. Taylor, R. Krishna, Modelling reactive distillation, Chem. Eng. Sci.55 (22) (2000) 5183-5229 [8] R. Baur, A.P. Higler, R. Taylor, R. Krishna, Comparison of equilibrium stage and nonequilibrium stage models for reactive distillation, Chem. Eng. J. 76 (1) (2000) 33-47 [9] A. Hoffmann, C. Noeres, A. Górak, Scale-up of reactive distillation columns with catalytic packings, Chem. Eng. Process.:Process. Intensif. 43 (3) (2004) 383-395 [10] W.L. Luyben, C.C. Yu, Reactive Distillation Design and Control, John Wiley & Sons, New York, 2008 [11] P. Moritz, H. Hasse, Fluid dynamics in reactive distillation packing Katapak-S, Chem. Eng. Sci. 54 (10) (1999) 1367-1374 [12] H. Li, F.Z. Wang, C.C. Wang, X. Gao, X.G. Li, Liquid flow behavior study in SiC foam corrugated sheet using a novel ultraviolet fluorescence technique coupled with CFD simulation, Chem. Eng. Sci. 123 (2015) 341-349 [13] M.V. Twigg, J.T. Richardson, Fundamentals and applications of structured ceramic foam catalysts, Ind. Eng. Chem. Res. 46 (12) (2007) 4166-4177 [14] A. Kołodziej, M. Jaroszyński, I. Bylica, Mass transfer and hydraulics for KATAPAK-S, Chem. Eng. Process.:Process. Intensif. 43 (3) (2004) 457-464 [15] J. Lévêque, D. Rouzineau, M. Prévost, M. Meyer, Hydrodynamic and mass transfer efficiency of ceramic foam packing applied to distillation, Chem. Eng. Sci. 64 (11) (2009) 2607-2616 [16] J.M. van Baten, R. Krishna, Liquid-phase mass transfer within KATAPAK-S structures studied using computational fluiddynamics simulations, Catal. Today 69 (2001) 371-377 [17] J.M. van Baten, J. Ellenberger, R. Krishna, Radial and axial dispersion of the liquid phase within a KATAPAK-S structure:Experiments vs. CFD simulations, Chem. Eng. Sci. 56 (3) (2001) 813-821 [18] J.M. van Baten, R. Krishna, Gas and liquid phase mass transfer within KATAPAK-S structures studied using CFD simulations, Chem. Eng. Sci. 57 (9) (2002) 1531-1536 [19] H. Ishikawa, S. Ookawara, S. Yoshikawa, A study of wavy falling film flow on micro-baffled plate, Chem. Eng. Sci. 149 (2016) 104-116 [20] Y.Y. Xu, M. Zhao, S. Paschke, G. Wozny, Detailed investigations of the countercurrent multiphase (gas-liquid and gas-liquid-liquid) flow behavior by three-dimensional computational fluid dynamics simulations, Ind. Eng. Chem. Res. 53 (18) (2014) 7797-7809 [21] R.K. Singh, J.E. Galvin, X. Sun, Three-dimensional simulation of rivulet and film flows over an inclined plate:Effects of solvent properties and contact angle, Chem. Eng. Sci.142 (2016) 244-257 [22] Y. Haroun, D. Legendre, L. Raynal, Volume of fluid method for interfacial reactive mass transfer:Application to stable liquid film, Chem. Eng. Sci. 65 (10) (2010) 2896-2909 [23] Y. Haroun, D. Legendre, L. Raynal, Direct numerical simulation of reactive absorption in gas-liquid flow on structured packing using interface capturing method, Chem. Eng. Sci. 65 (1) (2010) 351-356 [24] Y. Haroun, L. Raynal, D. Legendre, Mass transfer and liquid hold-up determination in structured packing by CFD, Chem. Eng. Sci. 75 (2012) 342-348 [25] C. Kunkelmann, P. Stephan, CFD simulation of boiling flows using the volume-of-fluid method within OpenFOAM, Numer. Heat Transf. Part A:Appl. 56 (8) (2009) 631-646 [26] S. Rieks, E.Y. Kenig, Modelling and numerical simulation of coupled transport phenomena with phase change:Layer evaporation of a binary mixture, Chem. Eng. Sci.176 (2018) 367-376 [27] S. Rieks, E.Y. Kenig, Modelling and numerical simulation of coupled transport phenomena with phase change:Mixture evaporation from a rectangular capillary, Chem. Eng. Sci.181 (2018) 173-185 [28] K.A. Ogden, S.J.D. D'Alessio, J.P. Pascal, Gravity-driven flow over heated, porous, wavy surfaces, Phys. Fluids 23 (12) (2011) 122102 [29] R. Usha, S. Naire, A thin film on a porous substrate:A two-sided model, dynamics and stability, Chem. Eng. Sci. 89 (2013) 72-88 [30] A. Goharzadeh, A. Khalili, B.B. Jørgensen, Transition layer thickness at a fluid-porous interface, Phys. Fluids 17 (5) (2005) 057102 [31] B. Goyeau, D. Lhuillier, D. Gobin, M.G. Velarde, Momentum transport at a fluid-porous interface, Int. J. Heat Mass Transf. 46 (21) (2003) 4071-4081 [32] Y. Chou, R.J. Yang, The evaporation of a saturated porous layer inside an inclined airflow channel, Int. J. Heat Fluid Flow 28 (3) (2007) 407-417 [33] J.S. Leu, J.Y. Jang, Y. Chou, Heat and mass transfer for liquid film evaporation along a vertical plate covered with a thin porous layer, Int. J. Heat Mass Transf. 49 (11-12) (2006) 1937-1945 [34] J.S. Leu, J.Y. Jang, W.C. Chou, Convection heat and mass transfer along a vertical heated plate with film evaporation in a non-Darcian porous medium, Int. J. Heat Mass Transf. 52 (23-24) (2009) 5447-5450 [35] A. Terzi, W. Foudhil, S. Harmand, S.B. Jabrallah, Liquid film evaporation inside an inclined channel:Effect of the presence of a porous layer, Int. J. Therm. Sci.109 (2016) 136-147 [36] Z.S. Zhang, A.S. Hong, X.G. Li, H. Li, X. Gao, Absorption and desorption of liquid film flowing over a porous layer, Int. Commun. Heat Mass Transf. 108 (2019) 104311 [37] M. Lacroix, P. Nguyen, D. Schweich, C. PhamHuu, S. Savin-Poncet, D. Edouard, Pressure drop measurements and modeling on SiC foams, Chem. Eng. Sci. 62 (12) (2007) 3259-3267 [38] B.V. Antohe, J.L. Lage, D.C. Price, R.M. Weber, Experimental determination of permeability and inertia coefficients of mechanically compressed aluminum porous matrices, J. Fluids Eng. 119 (2) (1997) 404-412 [39] K. Boomsma, D. Poulikakos, The effects of compression and pore size variations on the liquid flow characteristics in metal foams, J. Fluids Eng. 124 (1) (2002) 263-272 [40] N. Dukhan, R. Picón-Feliciano, Á.R. Álvarez-Hernández, Air flow through compressed and uncompressed aluminum foam:Measurements and correlations, J. Fluids Eng. 128 (5) (2006) 1004-1012 [41] S.C. Tzeng, T.M. Jeng, Interstitial heat transfer coefficient and dispersion conductivity in compressed metal foam heat sinks, J. Electron. Packag. 129 (2) (2007) 113-119 [42] A.A. Alhusseini, K. Tuzla, J.C. Chen, Falling film evaporation of single component liquids, Int. J. Heat Mass Transf. 41 (12) (1998) 1623-1632 [43] W. Nusselt, Die oberflachenkondensation des wasserdampfes, Z.Ver.Dtsch.Ing. 60 (1916) 541-546 [44] R.B. Bird, W.E. Stewart, L. Edwin, Transport Phenomena (second edition), John Wily & sons, New York, 2002 [45] J.C. Crause, I. Nieuwoudt, Mass transfer in a short wetted-wall column. 1. Pure components, Ind. Eng. Chem. Res. 38 (12) (1999) 4928-4932 [46] S.M. Yih, K.Y. Chen, Gas absorption into wavy and turbulent falling liquid films in a wetted-wall column, Chem. Eng. Commun. 17 (1-6) (1982) 123-136 [47] P.W.A.M. Wenmakers, J. van der Schaaf, B.F.M. Kuster, J.C. Schouten, Liquid-solid mass transfer for cocurrent gas-liquid upflow through solid foam packings, AIChE J. 56 (11) (2010) 2923-2933 |