[1] V.M. Bolanos-Garcia, N.E. Chayen, New directions in conventional methods of protein crystallization, Prog. Biophys. Mol. Biol. 101 (1–3) (2009) 3–12. [2] Q.L. Zhao, N. Liu, B.Z. Wang, W.L. Wang, A study of solvent selectivity on the crystal morphology of FOX-7 via a modified attachment energy model, RSC Adv. 6 (64) (2016) 59784–59793. [3] J.J. de Yoreo, A. Wierzbicki, P.M. Dove, New insights into mechanisms of biomolecular control on growth of inorganic crystals, CrystEngComm 9 (12) (2007) 1144–1152. [4] K. Sankaranarayanan, P. Ramasamy, Unidirectional seeded single crystal growth from solution of benzophenone, J. Cryst. Growth 280 (3–4) (2005) 467–473. [5] P. Hartman, W.G. Perdok, On the relations between structure and morphology of crystals. I, Acta Crystallogr. 8 (1955) 49–52. [6] P. Hartman, W.G. Perdok, On the relations between structure and morphology of crystals. II, Acta Crystallogr. 8 (1955) 521–524. [7] P. Hartman, W.G. Perdok, On the relations between structure and morphology of crystals. III, Acta Crystallogr. 8 (1955) 525–529. [8] I. Weissbuch, V.Y. Torbeev, L. Leiserowitz, M. Lahav, Solvent effect on crystal polymorphism: Why addition of methanol or ethanol to aqueous solutions induces the precipitation of the least stable beta form of glycine, Angew. Chem. Int. Ed. 44 (21) (2005) 3226–3229. [9] S. Moitra, T. Kar, Studies on the crystal growth and characterization of urea L-malic acid single crystals grown from different solvents, Mater. Lett. 62 (10–11) (2008) 1609–1612. [10] J.W. Kim, J.K. Kim, H.S. Kim, K.K. Koo, Application of internal seeding and temperature cycling for reduction of liquid inclusion in the crystallization of RDX, Org. Process. Res. Dev. 15 (3) (2011) 602–609. [11] M. Lahav, L. Leiserowitz, The effect of solvent on crystal growth and morphology, Chem. Eng. Sci. 56 (7) (2001) 2245–2253. [12] C.J. Tilbury, D.A. Green, W.J. Marshall, M.F. Doherty, Predicting the effect of solvent on the crystal habit of small organic molecules, Cryst. Growth Des. 16 (5) (2016) 2590–2604. [13] Z.B. Kuvadia, M.F. Doherty, Effect of structurally similar additives on crystal habit of organic molecular crystals at low supersaturation, Cryst. Growth Des. 13 (4) (2013) 1412–1428. [14] S. Piana, M. Reyhani, J.D. Gale, Simulating micrometre-scale crystal growth from solution, Nature 438 (7064) (2005) 70–73. [15] M.W. Anderson, J.T. Gebbie-Rayet, A.R. Hill, N. Farida, M.P. Attfield, P. Cubillas, V.A. Blatov, D.M. Proserpio, D. Akporiaye, B. Arstad, J.D. Gale, Predicting crystal growth via a unified kinetic three-dimensional partition model, Nature 544 (7651) (2017) 456–459. [16] A.R. Hill, P. Cubillas, J.T. Gebbie-Rayet, M. Trueman, N. de Bruyn, Z.A. Harthi, R.J.S. Pooley, M.P. Attfield, V.A. Blatov, D.M. Proserpio, J.D. Gale, D. Akporiaye, B. Arstad, M.W. Anderson, CrystalGrower: A generic computer program for Monte Carlo modelling of crystal growth, Chem. Sci. 12 (3) (2021) 1126–1146. [17] M. Salvalaglio, T. Vetter, M. Mazzotti, M. Parrinello, Controlling and predicting crystal shapes: The case of urea, Angew. Chem. Int. Ed. 125 (50) (2013) 13611–13614. [18] M. Salvalaglio, T. Vetter, F. Giberti, M. Mazzotti, M. Parrinello, Uncovering molecular details of urea crystal growth in the presence of additives, J. Am. Chem. Soc. 134 (41) (2012) 17221–17233. [19] Z. Bjelobrk, P.M. Piaggi, T. Weber, T. Karmakar, M. Mazzotti, M. Parrinello, Naphthalene crystal shape prediction from molecular dynamics simulations, CrystEngComm 21 (21) (2019) 3280–3288. [20] D.D. Han, T. Karmakar, F. Liu, Y. Wang, W.W. Tang, J.B. Gong, Uncovering the role of surfactants in controlling the crystal growth of pyridoxine hydrochloride, Cryst. Growth Des. 19 (12) (2019) 7240–7248. [21] H.C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature, J. Chem. Phys. 72 (4) (1980) 2384–2393. [22] R. Docherty, G. Clydesdale, K.J. Roberts, P. Bennema, Application of Bravais–Friedel–Donnay–Harker, attachment energy and Ising models to predicting and understanding the morphology of molecular crystals, J. Phys. D Appl. Phys. 24 (2) (1991) 89–99. [23] Z. Berkovitch-Yellin, J. van Mil, L. Addadi, M. Idelson, M. Lahav, L. Leiserowitz, Crystal morphology engineering by “tailor-made” inhibitors: A new probe to fine intermolecular interactions, J. Am. Chem. Soc. 107 (11) (1985) 3111–3122. [24] Z. Berkovitch-Yellin, Toward an ab initio derivation of crystal morphology, J. Am. Chem. Soc. 107 (26) (1985) 8239–8253. [25] X.H. Duan, C.X. Wei, Y.G. Liu, C.H. Pei, A molecular dynamics simulation of solvent effects on the crystal morphology of HMX, J. Hazard. Mater. 174 (1–3) (2010) 175–180. [26] C.Y. Zhang, C.L. Ji, H.Z. Li, Y. Zhou, J.J. Xu, R.J. Xu, J. Li, Y.J. Luo, Occupancy model for predicting the crystal morphologies influenced by solvents and temperature, and its application to nitroamine explosives, Cryst. Growth Des. 13 (1) (2013) 282–290. [27] G.C. Lan, S.H. Jin, J. Li, J.Y. Wang, J.X. Li, S.S. Chen, L.J. Li, The study of external growth environments on the crystal morphology of ε-HNIW by molecular dynamics simulation, J. Mater. Sci. 53 (18) (2018) 12921–12936. [28] Y.Z. Liu, S.Y. Niu, W.P. Lai, T. Yu, Y.D. Ma, H.X. Gao, F.Q. Zhao, Z.X. Ge, Crystal morphology prediction of energetic materials grown from solution: Insights into the accurate calculation of attachment energies, CrystEngComm 21 (33) (2019) 4910–4917. [29] L. Song, F.Q. Zhao, S.Y. Xu, X.H. Ju, Uncovering the action of ethanol controlled crystallization of 3, 4-bis(3-nitrofurazan-4-yl)furoxan crystal: A molecular dynamics study, J. Mol. Graph. Model. 92 (2019) 303–312. [30] T. Zhou, F. Chen, J. Li, L. He, Y.Y. Ren, X.L. Wang, D.L. Cao, J.L. Wang, Morphology prediction of 5, 5'-bistetrazole-1, 1'-diolate (BTO) crystal in solvents with different models using molecular dynamics simulation, J. Cryst. Growth 548 (2020) 125843. [31] N. Fischer, D. Fischer, T.M. Klapötke, D.G. Piercey, J. Stierstorfer, Pushing the limits of energetic materials–The synthesis and characterization of dihydroxylammonium 5, 5'-bistetrazole-1, 1'-diolate, J. Mater. Chem. 22 (38) (2012) 20418. [32] N. Fischer, T.M. Klapötke, M. Reymann, J. Stierstorfer, Nitrogen-rich salts of 1 H, 1' H-5, 5'-bitetrazole-1, 1'-diol: Energetic materials with high thermal stability, Eur. J. Inorg. Chem. 2013 (12) (2013) 2167–2180. [33] D. Badgujar, M. Talawar, Thermal and sensitivity study of dihydroxyl ammonium 5, 5'-bistetrazole-1, 1'-diolate (TKX-50)-based melt cast explosive formulations, Prop., Explos., Pyrotech. 42 (8) (2017) 883–888. [34] N.V. Muravyev, K.A. Monogarov, A.F. Asachenko, M.S. Nechaev, I.V. Ananyev, I.V. Fomenkov, V.G. Kiselev, A.N. Pivkina, Pursuing reliable thermal analysis techniques for energetic materials: Decomposition kinetics and thermal stability of dihydroxylammonium 5, 5'-bistetrazole-1, 1'-diolate (TKX-50), Phys. Chem. Chem. Phys. 19 (1) (2017) 436–449. [35] M.B. Talawar, S. Nandagopal, S. Singh, A.P. Mahajan, D.M. Badgujar, M. Gupta, M.A. Shafeeuulla Khan, TGA, DSC and DFT studies of TKX-50, ABTOX and their key precursors, Chemistry Select. 3 (43) (2018) 12175–12182. [36] D. Li, D.L. Cao, L.Z. Chen, J.L. Wang, Z.M. Jiang, X. Ma, Solubility of Dihydroxylammonium 5, 5'-Bistetrazole-1, 1'-diolate in (formic acid, water) and their binary solvents from 298.15 K to 333.15 K at 101.1 kPa, J. Chem. Thermodyn. 128 (2019) 10–18. [37] S.L. Xiong, S.S. Chen, S.H. Jin, L.J. Li, Additives effects on crystal morphology of dihydroxylammonium 5, 5'-bistetrazole-1, 1'-diolate by molecular dynamics simulations, J. Energ. Mater. 34 (4) (2016) 384–394. [38] F. Chen, T. Zhou, J. Li, X.L. Wang, D.L. Cao, J.L. Wang, Z.J. Yang, Crystal morphology of dihydroxylammonium 5, 5'-bistetrazole-1, 1'-diolate (TKX-50) under solvents system with different polarity using molecular dynamics, Comput. Mater. Sci. 168 (2019) 48–57. [39] X. Xu, D. Chen, H.Z. Li, R. Xu, H.X. Zhao, Crystal morphology modification of 5, 5'-bisthiazole-1, 1'-dioxyhydroxyammonium salt, ChemistrySelect 5 (6) (2020) 1919–1924. [40] J. Chen, B.L. Trout, Computer-aided solvent selection for improving the morphology of needle-like crystals: A case study of 2, 6-dihydroxybenzoic acid, Cryst. Growth Des. 10 (10) (2010) 4379–4388. [41] P. Hartman, P. Bennema, The attachment energy as a habit controlling factor: I. Theoretical considerations, J. Cryst. Growth 49 (1) (1980) 145–156. [42] P. Hartman, The attachment energy as a habit controlling factor: III. Application to corundum, J. Cryst. Growth 49 (1) (1980) 166–170. [43] Material Studio 2018, Acceryls. Inc, CA, San Diego, 2018. [44] H. Sun, COMPASS: An ab initio force-field optimized for condensed-phase applications–Overview with details on alkane and benzene compounds, J. Phys. Chem. B 102 (38) (1998) 7338–7364. [45] H. Sun, P. Ren, J.R. Fried, The COMPASS force field: Parameterization and validation for phosphazenes, Comput. Theor. Polym. Sci. 8 (1–2) (1998) 229–246. [46] P. Dauber-Osguthorpe, V.A. Roberts, D.J. Osguthorpe, J. Wolff, M. Genest, A.T. Hagler, Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system, Proteins 4 (1) (1988) 31–47. [47] H. Sun, Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters, J. Comput. Chem. 15 (7) (1994) 752–768. [48] H. Sun, Ab initio calculations and force field development for computer simulation of polysilanes, Macromolecules 28 (3) (1995) 701–712. [49] S.L. Mayo, B.D. Olafson, W.A. Goddard, DREIDING: A generic force field for molecular simulations, J. Phys. Chem. 94 (26) (1990) 8897–8909. [50] T. Lu, F.W. Chen, Atomic dipole moment corrected Hirshfeld population method, J. Theor. Comput. Chem. 11 (1) (2012) 163–183. [51] C.I. Bayly, P. Cieplak, W. Cornell, P.A. Kollman, A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model, J. Phys. Chem. 97 (40) (1993) 10269–10280. [52] T. Lu, F.W. Chen, Multiwfn: A multifunctional wavefunction analyzer, J. Comput. Chem. 33 (5) (2012) 580–592. [53] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 09, Gaussian, Inc., Wallingford CT, 2009. [54] N. Karasawa, W.A. Goddard, Force fields, structures, and properties of poly(vinylidene fluoride) crystals, Macromolecules 25 (26) (1992) 7268–7281. [55] M.J.L. Sangster, M. Dixon, Interionic potentials in alkali halides and their use in simulations of the molten salts, Adv. Phys. 25 (3) (1976) 247–342. [56] T. Lu, F.W. Chen, Comparison of computational methods for atomic charges, Acta Phys. Chimica Sin. 28 (1) (2012) 1–18. [57] B. Leimkuhler, E. Noorizadeh, O. Penrose, Comparing the efficiencies of stochastic isothermal molecular dynamics methods, J. Stat. Phys. 143 (5) (2011) 921–942. [58] L. Xiao, S.F. Guo, H.P. Su, B.W. Gou, Q.E. Liu, G.Z. Hao, Y.B. Hu, X.H. Wang, W. Jiang, Preparation and characteristics of a novel PETN/TKX-50 co-crystal by a solvent/non-solvent method, RSC Adv. 9 (16) (2019) 9204–9210. [59] C.Y. Zhang, S.H. Jin, S.S. Chen, Y. Zhang, L. Qin, X.C. Wei, Q.H. Shu, Solubilities of dihydroxylammonium 5, 5'-bistetrazole-1, 1'-diolate in various pure solvents at temperatures between 293.15 and 323.15 K, J. Chem. Eng. Data 61 (5) (2016) 1873–1875. |