[1] R.S. Haszeldine, Carbon capture and storage: How green can black be?, Science, 325 (2009) 1647-1652. [2] D.M. D'Alessandro, B. Smit, J.R. Long, Carbon dioxide capture: prospects for new materials, Angew. Chem. Int. Ed Engl. 49 (35) (2010) 6058–6082. [3] J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R.D. Srivastava, Advances in CO2 capture technology—the US Department of Energy's Carbon Sequestration Program, Int. J. Greenhouse Gas Control, 2 (2008) 9-20. [4] X. Chen, G.T. Rochelle, Thermodynamics of CO2/2-methylpiperazine/water, Ind. Eng. Chem. Res., 52 (2013) 4229-4238. [5] G.T. Rochelle, Amine Scrubbing for CO2 Capture, Science, 325 (2009) 1652-1654. [6] H. Weiss, Rectisol wash for purification of partial oxidation gases, Gas Separation & Purification, 2 (1988) 171-176. [7] A. Bandyopadhyay, Amine versus ammonia absorption of CO2 as a measure of reducing GHG emission: a critical analysis, Clean Technol. Environ. Policy 13 (2) (2011) 269–294.[8] K.E. Gutowski, E.J. Maginn, Amine-functionalized task-specific ionic liquids: a mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation, J. Am. Chem. Soc. 130 (44) (2008) 14690–14704. [8] A. Bandyopadhyay, Amine versus ammonia absorption of CO2 as a measure of reducing GHG emission: a critical analysis, Clean Technol. Environ. Policy 13 (2) (2011) 269–294.[8] K.E. Gutowski, E.J. Maginn, Amine-functionalized task-specific ionic liquids: a mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation, J. Am. Chem. Soc. 130 (44) (2008) 14690–14704. [9] C. Wang, X. Luo, X. Zhu, G. Cui, D.-E. Jiang, D. Deng, H. Li, S. Dai, The strategies for improving carbon dioxide chemisorption by functionalized ionic liquids, RSC Adv., 3 (2013) 15518-15527. [10] H. Liu, B. Liu, L.-C. Lin, G. Chen, Y. Wu, J. Wang, X. Gao, Y. Lv, Y. Pan, X. Zhang, X. Zhang, L. Yang, C. Sun, B. Smit, W. Wang, A hybrid absorption-adsorption method to efficiently capture carbon, Nat. Commun., 5 (2014) 5147. [11] C.M. Wang, X.Y. Luo, H.M. Luo, D.E. Jiang, H.R. Li, S. Dai, Tuning the basicity of ionic liquids for equimolar CO2 capture, Angew. Chem. Int. Ed., 50 (2011) 4918-4922. [12] L.A.“. Blanchard, D. Hancu, E.J.”. Beckman, J.F.“. Brennecke, Green processing using ionic liquids and CO2”>, Nature“> 399”> (6731“>) (1999) 28”>–29“>. [13] E.D. Bates, R.D. Mayton, I. Ntai, J.H. Davis, CO2 capture by a task-specific ionic liquid, J. Am. Chem. Soc., 124 (2002) 926-927. [14] T.P.T. Pham, C.-W. Cho, Y.-S. Yun, Environmental fate and toxicity of ionic liquids: a review, Water Res., 44 (2010) 352-372. [15] S. Zeng, X. Zhang, L. Bai, X. Zhang, H. Wang, J. Wang, D. Bao, M. Li, X. Liu, S. Zhang, Ionic-liquid-based CO2 capture systems: structure, interaction and process, Chem. Rev., 117 (2017) 9625-9673. [16] G.K. Cui, J.J. Wang, S.J. Zhang, Active chemisorption sites in functionalized ionic liquids for carbon capture, Chem. Soc. Rev. 45 (15) (2016) 4307–4339. [17] K.E. Gubbins, K. Gu, L. Huang, Y. Long, J.M. Mansell, E.E. Santiso, K. Shi, M. Sliwinska-Bartkowiak, D. Srivastava, Surface-driven high-pressure processing, Engineering, 4 (2018) 311-320. [18] Y. Chen, Y. Sun, Z. Yang, X. Lu, X. Ji, CO2 separation using a hybrid choline-2-pyrrolidine-carboxylic acid/polyethylene glycol/water absorbent, Appl. Energy, 257 (2020) 113962. [19] J. Zhang, S. Zhang, K. Dong, Y. Zhang, Y. Shen, X. Lv, Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids, Chemistry-A European Journal, 12 (2006) 4021-4026. [20] X. Wang, N.G. Akhmedov, Y. Duan, D. Luebke, B. Li, Immobilization of amino acid ionic liquids into nanoporous microspheres as robust sorbents for CO2 capture, Journal of Materials Chemistry A, 1 (2013) 2978-2982. [21] N.H. Wu, X.Y. Ji, W.L. Xie, C. Liu, X. Feng, X.H. Lu, Confinement phenomenon effect on the CO2 absorption working capacity in ionic liquids immobilized into porous solid supports, Langmuir 33 (42) (2017) 11719–11726. [22] Y. Chen, Z. Dai, X. Ji, X. Lu, CO2 absorption using a hybrid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide/titanium dioxide/polyethylene glycol absorbent, Fluid Phase Equilib., 538 (2021) 113011. [23] H. Li, B. Liu, M. Yang, D. Zhu, Z. Huang, W. Chen, L. Yang, G. Chen, CO2 separation performance of zeolitic imidazolate framework-8 porous slurry in a pilot-scale packed tower, Ind. Eng. Chem. Res., 59 (2020) 6154-6163. [24] L. Safaric, S.S. Yekta, J. Ejlertsson, M. Safari, H.N. Najafabadi, A. Karlsson, F. Ometto, B.H. Svensson, A. Bjorn, A comparative study of biogas reactor fluid rheology-implications for mixing profile and power demand, Processes, 7 (2019) 700. [25] K. Anoop, R. Sadr, R. Yrac, M. Amani, High-pressure rheology of alumina-silicone oil nanofluids, Powder Technol., 301 (2016) 1025-1031. [26] A. Ali, S.U. Ilyas, S. Garg, M. Alsaady, K. Maqsood, R. Nasir, A. Abdulrahman, M. Zulfiqar, A. Bin Mahfouz, A. Ahmed, S. Ridha, Dynamic viscosity of Titania nanotubes dispersions in ethylene glycol/water-based nanofluids: Experimental evaluation and predictions from empirical correlation and artificial neural network, Int. Commun. Heat Mass Transf., 118 (2020) 104882. [27] K.F.K. Adane, M. Agelin-Chaab, Laminar-turbulent transition flows of non-Newtonian slurries: models assessment, Journal of Fluids Engineering, 141 (2019) 011104. [28] W.J. Tseng, K.C. Lin, Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions, Mater. Sci. Eng. A 355 (1–2) (2003) 186–192.[29] I.M. Alarifi, A.B. Alkouh, V. Ali, H.M. Nguyen, A. Asadi, On the rheological properties of MWCNT-TiO2/oil hybrid nanofluid: an experimental investigation on the effects of shear rate, temperature, and solid concentration of nanoparticles, Powder Technol. 355 (2019) 157–162. [29] W.J. Tseng, K.C. Lin, Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions, Mater. Sci. Eng. A 355 (1–2) (2003) 186–192.[29] I.M. Alarifi, A.B. Alkouh, V. Ali, H.M. Nguyen, A. Asadi, On the rheological properties of MWCNT-TiO2/oil hybrid nanofluid: an experimental investigation on the effects of shear rate, temperature, and solid concentration of nanoparticles, Powder Technol. 355 (2019) 157–162. [30] Y. Liu, J. Chen, J. Song, Z. Hai, X. Lu, X. Ji, C. Wang, Adjusting the rheological properties of corn-straw slurry to reduce the agitation power consumption in anaerobic digestion, Bioresour. Technol., 272 (2019) 360-369. [31] A.B. Metzner, J.C. Reed, Flow of non-Newtonian fluids—correlation of the laminar, transition, and turbulent-flow regions, AIChE J. 1 (4) (1955) 434–440.[32] L.B. Tian, F. Shen, H.R. Yuan, D.X. Zou, Y.P. Liu, B.N. Zhu, X.J. Li, Reducing agitation energy-consumption by improving rheological properties of corn stover substrate in anaerobic digestion, Bioresour. Technol. 168 (2014) 86–91.[33] B. Tang, Z. Zhang, Essence of disposing the excess sludge and optimizing the operation of wastewater treatment: rheological behavior and microbial ecosystem, Chemosphere 105 (2014) 1–13.[34] P.S. Yen, L.C. Chen, C.Y. Chien, R.M. Wu, D.J. Lee, Network strength and dewaterability of flocculated activated sludge, Water Res. 36 (3) (2002) 539–550.[35] H. Khanmohammadi, W. Wijanarko, N. Espallargas, Ionic liquids as additives in water-based lubricants: from surface adsorption to tribofilm formation, Tribol. Lett. 68 (4) (2020) 1–15.[36] J. Wu, L.W. Mu, J.H. Zhu, Y.F. Chen, X. Yin, X. Feng, X.H. Lu, R. Larsson, Y.J. Shi, Turning the solubility and lubricity of ionic liquids by absorbing CO2, Tribol. Int. 121 (2018) 223–230.[37] Y.F. Chen, C.Y. Ma, X.Y. Ji, Z.H. Yang, X.H. Lu, Thermodynamic study on aqueous polyethylene glycol 200 solution and performance assessment for CO2 separation, Fluid Phase Equilibria 504 (2020) 112336. [32] Y. Liu, J. Chen, J. Song, Z. Hai, X. Lu, X. Ji, C. Wang, Adjusting the rheological properties of corn-straw slurry to reduce the agitation power consumption in anaerobic digestion, Bioresour. Technol., 272 (2019) 360-369. [33] Y. Liu, J. Chen, J. Song, Z. Hai, X. Lu, X. Ji, C. Wang, Adjusting the rheological properties of corn-straw slurry to reduce the agitation power consumption in anaerobic digestion, Bioresour. Technol., 272 (2019) 360-369. [34] Y. Liu, J. Chen, J. Song, Z. Hai, X. Lu, X. Ji, C. Wang, Adjusting the rheological properties of corn-straw slurry to reduce the agitation power consumption in anaerobic digestion, Bioresour. Technol., 272 (2019) 360-369. [35] Y. Liu, J. Chen, J. Song, Z. Hai, X. Lu, X. Ji, C. Wang, Adjusting the rheological properties of corn-straw slurry to reduce the agitation power consumption in anaerobic digestion, Bioresour. Technol., 272 (2019) 360-369. [36] Y. Liu, J. Chen, J. Song, Z. Hai, X. Lu, X. Ji, C. Wang, Adjusting the rheological properties of corn-straw slurry to reduce the agitation power consumption in anaerobic digestion, Bioresour. Technol., 272 (2019) 360-369. [37] Y. Liu, J. Chen, J. Song, Z. Hai, X. Lu, X. Ji, C. Wang, Adjusting the rheological properties of corn-straw slurry to reduce the agitation power consumption in anaerobic digestion, Bioresour. Technol., 272 (2019) 360-369. [38] S. Fernes, I.B. Gomes, L.C. Simo, M. Simo, Overview on the hydrodynamic conditions found in industrial systems and its impact in (bio)fouling formation, Chem. Eng. J., 418 (2021) 129348. |