[1] D.Y. Luan, S.J. Zhou, S.Y. Chen, S.P. Chu, CFD simulation of the flow field and cavern formation of pseudoplastic fluid with a 6-bent-blade impeller, Chin. J. Process Eng. 10 (6) (2010) 1054–1059. (in Chinese) [2] D.Y. Luan, S.J. Zhou, S.Y. Chen, Cavern development of pseudoplastic fluids stirred by impeller of perturbed six-bent-bladed turbine, J. Mech. Eng. 48 (16) (2012) 152–157. (in Chinese) [3] J.S. Ayala, H.L. de Moura, R. de Lima Amaral, F. de Assis Jr Oliveira, J.R. Nunhez, G.J. de Castilho, Two-dimensional shear rate field and flow structures of a pseudoplastic fluid in a stirred tank using particle image velocimetry, Chem. Eng. Sci. 248 (2022) 117198. [4] Y.Y. Bao, B. Yang, Y. Xie, Z.M. Gao, Z.D. Zhang, T. Liu, X.H. Gao, Power demand and mixing performance of coaxial mixers in non-Newtonian fluids, J. Chem. Eng. Japan 44 (2) (2011) 57–66. [5] S. Saeed, F. Ein-Mozaffari, S.R. Upreti, Using computational fluid dynamics to study the dynamic behavior of the continuous mixing of Herschel-Bulkley fluids, Ind. Eng. Chem. Res. 47 (19) (2008) 7465–7475. [6] M. Zlokarnik, Stirring: Theory and Practice, Wiley-VCH, Weinhim, 2001. [7] L. Pakzad, F. Ein-Mozaffari, P. Chan, Using electrical resistance tomography and computational fluid dynamics modeling to study the formation of cavern in the mixing of pseudoplastic fluids possessing yield stress, Chem. Eng. Sci. 63 (9) (2008) 2508–2522. [8] P. Prajapati, F. Ein-Mozaffari, CFD investigation of the mixing of yield-pseudoplastic fluids with anchor impellers, Chem. Eng. Technol. 32 (8) (2009) 1211–1218. [9] L. Rudolph, M. Schäfer, V. Atiemo-Obeng, M. Kraume, Experimental and numerical analysis of power consumption for mixing of high viscosity fluids with a co-axial mixer, Chem. Eng. Res. Des. 85 (5) (2007) 568–575. [10] J. Sossa-Echeverria, F. Taghipour, Computational simulation of mixing flow of shear thinning non-Newtonian fluids with various impellers in a stirred tank, Chem. Eng. Process. Process. Intensif. 93 (2015) 66–78. [11] C.W. Bakker, C.J. Meyer, D.A. Deglon, The development of a cavern model for mechanical flotation cells, Miner. Eng. 23 (11–13) (2010) 968–972. [12] L. Pakzad, F. Ein-Mozaffari, S.R. Upreti, A. Lohi, A novel and energy-efficient coaxial mixer for agitation of non-Newtonian fluids possessing yield stress, Chem. Eng. Sci. 101 (2013) 642–654. [13] F. Ein-Mozaffari, S.R. Upreti, Using ultrasonic Doppler velocimetry and CFD modeling to investigate the mixing of non-Newtonian fluids possessing yield stress, Chem. Eng. Res. Des. 87 (4) (2009) 515–523. [14] L.W. Adams, M. Barigou, CFD analysis of caverns and pseudo-caverns developed during mixing of non-Newtonian fluids, Chem. Eng. Res. Des. 85 (5) (2007) 598–604. [15] D.Y. Luan, Z.R. Wang, H. Wang, S.S. Wang, L.B. Li, Y.M. Chen, Determination method of the cavern boundary viscosity in a stirred tank with pseudoplastic fluid, AIChE J. 66 (5) (2020) e16941. [16] J. Solomon, T.P. Elson, A.W. Nienow, G.W. Pace, Cavern sizes in agitated fluids with a yield stress, Chem. Eng. Commun. 11 (1–3) (1981) 143–164. [17] T.P. Elson, D.J. Cheesman, A.W. Nienow, X-ray studies of cavern sizes and mixing performance with fluids possessing a yield stress, Chem. Eng. Sci. 41 (10) (1986) 2555–2562. [18] A. Amanullah, S.A. Hjorth, A.W. Nienow, A new mathematical model to predict cavern diameters in highly shear thinning, power law liquids using axial flow impellers, Chem. Eng. Sci. 53 (3) (1998) 455–469. [19] J. Sossa-Echeverria, F. Taghipour, Effect of mixer geometry and operating conditions on flow mixing of shear thinning fluids with yield stress, AIChE J. 60 (3) (2014) 1156–1167. [20] L.K. Hui, C.P.J. Bennington, G.A. Dumont, Cavern formation in pulp suspensions using side-entering axial-flow impellers, Chem. Eng. Sci. 64 (3) (2009) 509–519. [21] R.J. Wilkens, J.D. Miller, J.R. Plummer, D.C. Dietz, K.J. Myers, New techniques for measuring and modeling cavern dimensions in a Bingham plastic fluid, Chem. Eng. Sci. 60 (19) (2005) 5269–5275. [22] Q. Xiao, N. Yang, J.H. Zhu, L.J. Guo, Modeling of cavern formation in yield stress fluids in stirred tanks, AIChE J. 60 (8) (2014) 3057–3070. [23] D.Y. Luan, S.F. Zhang, J.P. Lu, X.G. Zhang, Chaotic characteristics enhanced by impeller of perturbed six-bent-bladed turbine in stirred tank, Results Phys. 7 (2017) 1524–1530. [24] Z.H. Liu, X.Y. Yang, Z.M. Xie, R.L. Liu, C.Y. Tao, Y.D. Wang, Chaotic mixing performance of high-viscosity fluid synergistically intensified by flexible impeller and floating particles, CIESCJ.64(8) (2013) 2794–2800. (in Chinese) [25] D.Y. Gu, Z.H. Liu, J. Li, Z.M. Xie, C.Y. Tao, Y.D. Wang, Intensification of chaotic mixing in a stirred tank with a punched rigid-flexible impeller and a chaotic motor, Chem. Eng. Process. Process. Intensif. 122 (2017) 1–9. [26] J. Aubin, C. Xuereb, Design of multiple impeller stirred tanks for the mixing of highly viscous fluids using CFD, Chem. Eng. Sci. 61 (9) (2006) 2913–2920. [27] L. Pakzad, F. Ein-Mozaffari, S.R. Upreti, A. Lohi, Agitation of Herschel–Bulkley fluids with the Scaba-anchor coaxial mixers, Chem. Eng. Res. Des. 91 (5) (2013) 761–777. [28] L. Pakzad, F. Ein-Mozaffari, S.R. Upreti, A. Lohi, Evaluation of the mixing of non-Newtonian biopolymer solutions in the reactors equipped with the coaxial mixers through tomography and CFD, Chem. Eng. J. 215-216 (2013) 279–296. [29] L. Pakzad, F. Ein-Mozaffari, S.R. Upreti, A. Lohi, Using tomography to assess the efficiency of the coaxial mixers in agitation of yield-pseudoplastic fluids, Chem. Eng. Res. Des. 91 (9) (2013) 1715–1724. [30] P.A. Tanguy, G. Ascanio, Mixing of shear-thinning fluids with dual off-centred impellers, Can. J. Chem. Eng. 83 (3) (2008) 393–400. [31] F. Cabaret, C. Rivera, L. Fradette, M. Heniche, P.A. Tanguy, Hydrodynamics performance of a dual shaft mixer with viscous Newtonian liquids, Chem. Eng. Res. Des. 85 (5) (2007) 583–590. [32] S. Saeed, F. Ein-Mozaffari, Using dynamic tests to study the continuous mixing of xanthan gum solutions, J. Chem. Technol. Biotechnol. 83 (4) (2008) 559–568. [33] B. Letellier, C. Xuereb, P. Swaels, P. Hobbes, J. Bertrand, Scale-up in laminar and transient regimes of a multi-stage stirrer, A CFD approach, Chem. Eng. Sci. 57 (21) (2002) 4617–4632. [34] A.B. Metzner, R.E. Otto, Agitation of non-Newtonian fluids, AIChE J. 3 (1) (1957) 3–10. [35] H. Ameur, Effect of some parameters on the performance of anchor impellers for stirring shear-thinning fluids in a cylindrical vessel, J. Hydrodyn. Ser B 28 (4) (2016) 669–675. [36] V. Buwa, A. Dewan, A.F. Nassar, F. Durst, Fluid dynamics and mixing of single-phase flow in a stirred vessel with a grid disc impeller: Experimental and numerical investigations, Chem. Eng. Sci. 61 (9) (2006) 2815–2822. [37] D.Y. Gu, Z.H. Liu, Z.M. Xie, J. Li, C.Y. Tao, Y.D. Wang, Numerical simulation of solid–liquid suspension in a stirred tank with a dual punched rigid-flexible impeller, Adv. Powder Technol. 28 (10) (2017) 2723–2734. [38] D.Y. Gu, C. Cheng, Z.H. Liu, Y.D. Wang, Numerical simulation of solid–liquid mixing characteristics in a stirred tank with fractal impellers, Adv. Powder Technol. 30 (10) (2019) 2126–2138. [39] N.G. Deen, T. Solberg, B.H. Hjertager, Flow generated by an aerated Rushton impeller: Two-phase PIV experiments and numerical simulations, Can. J. Chem. Eng. 80 (4) (2008) 1–15. [40] A. Brucato, M. Ciofalo, F. Grisafi, G. Micale, Numerical prediction of flow fields in baffled stirred vessels: A comparison of alternative modelling approaches, Chem. Eng. Sci. 53 (21) (1998) 3653–3684. [41] A. Kazemzadeh, F. Ein-Mozaffari, A. Lohi, L. Pakzad, Investigation of hydrodynamic performances of coaxial mixers in agitation of yield-pseudoplasitc fluids: Single and double central impellers in combination with the anchor, Chem. Eng. J. 294 (2016) 417–430. [42] Z. Jaworski, W. Bujalski, N. Otomo, A.W. Nienow, CFD study of homogenization with dual rushton turbines—Comparison with experimental results: Part I: Initial studies, Chem. Eng. Res. Des. 78 (3) (2000) 327–333. [43] Q. Wu, X.X. Yan, X. Xia, C.Y. Zhang, T. Xue, K.C. Yu, P. Liang, X. Huang, Analysis of the mixing performance of a full-scale membrane bioreactor for municipal wastewater treatment, Bioresour. Technol. 250 (2018) 932–935. [44] M.W.D. Brannock, Y. Wang, G. Leslie, Evaluation of full-scale membrane bioreactor mixing performance and the effect of membrane configuration, J. Membr. Sci. 350 (1–2) (2010) 101–108. |