[1] W.J. Yan, Y.H. Wu, X. Feng, C.H. Yang, X. Jin, J. Shen, Selective propylene epoxidation in liquid phase using highly dispersed Nb catalysts incorporated in mesoporous silicates, Chin. J. Chem. Eng. 26 (6) (2018) 1278–1284. [2] M.S. Batra, R. Dwivedi, R. Prasad, Recent developments in heterogeneous catalyzed epoxidation of styrene to styrene oxide, ChemistrySelect 4 (40) (2019) 11636–11673. [3] K. Miyamoto, K. Okuro, H. Ohta, Substrate specificity and reaction mechanism of recombinant styrene oxide isomerase from Pseudomonas putida S12, Tetrahedron Lett. 48 (18) (2017) 3255–3257. [4] Y. Liu, Y.C. Zhang, J.Q. Zhao, Progress on epoxidation of alkene catalyzed by titanium silicalite-1, Fine Chem. 38 (1) (2018) 9–16, 168. [5] M. Mitra, O. Cusso, S.S. Bhat, M.Z. Sun, M. Cianfanelli, M. Costas, E. Nordlander, Highly enantioselective epoxidation of olefins by H2O2 catalyzed by a non-heme Fe(II) catalyst of a chiral tetradentate ligand, DalTON Trans. 48 (18) (2019) 6123–6131. [6] S.S. Wang, G.Y. Yang, Recent advances in polyoxometalate-catalyzed reactions, Chem. Rev. 115 (11) (2015) 4893–4962. [7] K. Kamata, K. Yonehara, Y. Sumida, K. Yamaguchi, S. Hikichi, N. Mizuno, Efficient epoxidation of olefins with >= 99% selectivity and use of hydrogen peroxide, Science 300 (5621) (2003) 964–966. [8] K. Kamata, Y. Nakagawa, K. Yamaguchi, N. Mizuno, Efficient, regioselective epoxidation of dienes with hydrogen peroxide catalyzed by [γ–SiW10O34(H2O)2]4-, J. Catal. 224 (1) (2004) 224–228. [9] W.B. Cunningham, J.D. Tibbetts, M. Hutchby, K.A. Maltby, M.G. Davidson, U. Hintermair, P. Plucinski, S.D. Bull, Sustainable catalytic protocols for the solvent free epoxidation and anti–dihydroxylation of the alkene bonds of biorenewable terpene feedstocks using H2O2 as oxidant, Green Chem. 22 (2) (2020) 513–524. [10] S.S. Balula, I.C.M.S. Santos, L. Cunha–Silva, A.P. Carvalho, J. Pires, C. Freire, J.A.S. Cavaleiro, B. de Castro, A.M.V. Cavaleiro, Phosphotungstates as catalysts for monoterpenes oxidation: homo– and heterogeneous performance, Catal. Today 203 (2013) 95–102. [11] Y.X. Song, F. Xin, L.X. Zhang, Y. Wang, Oxidation of cyclohexene in the presence of transition-metal-substituted phosphotungstates and hydrogen peroxide:catalysis and reaction pathways, ChemCatChem 9 (21) (2017) 4139–4147. [12] K. Kamata, S. Kuzuya, K. Uehara, S. Yamaguchi, N. Mizuno, μ–η1:η1–peroxo–bridged dinuclear peroxotungstate catalytically active for epoxidation of olefins, Inorg. Chem. 46 (9) (2007) 3768–3774. [13] B. Wang, J. Zhang, X. Zou, H.G. Dong, P.J. Yao, Selective oxidation of styrene to 1,2–epoxyethylbenzene by hydrogen peroxide over heterogeneous phosphomolybdic acid supported on ionic liquid modified MCM–41, Chem. Eng. J. 260 (2015) 172–177. [14] X.X. Zhao, J.H. Sun, G.X. Sun, Q. You, X.C. Jiang, Y. Cui, Epoxidation of allyl chloride with H2O2 catalyzed by three structurally related quaternary ammonium modified polyoxophosphotungstates, Appl. Catal. A: Gen. 608 (2020) 117846. [15] J.H. Sun, X.X. Zhao, G.X. Sun, S. Zeb, Y. Cui, Q. You, Thermodynamic and kinetic study on the catalytic epoxidation of allyl chloride with H2O2 by new catalyst [(C18H37)2(CH3)2N]3{PO4 W(O)(O2)2)4}, Chem. Eng. J. 398 (2020) 125051. [16] Y. Kon, H. Hachiya, Y. Ono, T. Matsumoto, K. Sato, An effective synthesis of acid–sensitive epoxides via oxidation of terpenes and styrenes using hydrogen peroxide under organic solvent–free conditions, Synthesis (7) (2011) 1092–1098. [17] S. Omwoma, C.T. Gore, Y.C. Ji, C.W. Hu, Y.F. Song, Environmentally benign polyoxometalate materials, Coord. Chem. Rev. 286 (2015) 17–29. [18] Y.L. Luo, C.J. Liu, H.R. Yue, S.Y. Tang, Y.M. Zhu, B. Liang, Selective oxidation of cyclopentene with H2O2 by using H3PW12O40 and TBAB as a phase transfer catalyst, Chin. J. Chem. Eng. 27 (8) (2019) 1851–1856. [19] A. Dolbecq, E. Dumas, C.R. Mayer, P. Mialane, Hybrid organic-inorganic polyoxometalate compounds: from structural diversity to applications, Chem. Rev. 110 (10) (2010) 6009–6048. [20] Y. Nakagawa, K. Uehara, N. Mizuno, Reactivity of bis(mu–hydroxo) divanadium site in γ–H2SiV2W10O40- with hydroxo compounds, Inorg. Chem. 44 (24) (2005) 9068–9075. [21] Y. Zhou, Z.J. Guo, W. Hou, Q. Wang, J. Wang, Polyoxometalate–based phase transfer catalysis for liquid–solid organic reactions: a review, Catal. Sci. Technol. 5 (9) (2015) 4324–4335. [22] W. Zhao, Y. Ding, Z.X. Zhang, B.C. Ma, W.Y. Qiu, [(C18H37)2(CH3)2N]7[PW11O39]: a temperature–controlled phase transfer catalyst for olefin epoxidation, React. Kinet. Mech. Catal. 102 (1) (2011) 93–102. [23] H. Hachiya, Y. Kon, Y. Ono, K. Takumi, N. Sasagawa, Y. Ezaki, K. Sato, Unique salt effect on the high yield synthesis of acid–labile terpene oxides using hydrogen peroxide under acidic aqueous conditions, Synlett (19) (2011) 2819–2822. [24] M.F.M.G. Resul, A.M.L. Fernandez, A. Rehman, A.P. Harvey, Development of a selective, solvent–free epoxidation of limonene using hydrogen peroxide and a tungsten–based catalyst, React. Chem. Eng. 3 (5) (2018) 747–756. [25] S. Pathan, A. Patel, Novel heterogeneous catalyst, supported undecamolybdophosphate: synthesis, physico–chemical characterization and solvent–free oxidation of styrene, DalTON Trans. 40 (2) (2011) 348–355. [26] A. Patel, R. Sadasivan, Hybrid catalyst based on Cu substituted phosphotungstate and imidazole: synthesis, spectroscopic characterization, solvent free oxidation of styrene with TBHP and kinetics, Catal. Lett. 150 (2) (2020) 353–364. [27] R. Sadasivan, A. Patel, Flexible oxidation of styrene using TBHP over zirconia supported mono–copper substituted phosphotungstate, RSC Adv. 9 (48) (2019) 27755–27767. [28] R. Sadasivan, A. Patel, A. Ballabh, Investigation of catalytic properties of Cs salt of di–copper substituted phosphotungstate, Cs7[PW10Cu2(H2O)O38] in epoxidation of styrene, Inorg. Chim. Acta. 487 (2019) 345–353. [29] S. Keshipour, M. Khezerloo, Gold nanoparticles supported on cellulose aerogel as a new efficient catalyst for epoxidation of styrene, J. Iran. Chem. Soc. 14 (5) (2017) 1107-1112. [30] P.J. Domaille, Vanadium(V) substituted dodecatungstophosphates, Inorg. Synth. 29 (1990) 96–104. [31] S. Singh, A. Patel, Mono lacunary phosphotungstate anchored to MCM–41 as recyclable catalyst for biodiesel production via transesterification of waste cooking oil, Fuel 159 (2015) 720–727. [32] C. Venturello, R. Daloisio, Quaternary ammonium tetrakis (diperoxotungsto) phosphates(3–) as a new class of catalyst for efficient alkene epoxidation with hydrogen peroxide, J. Org. Chem. 53 (7) (1988) 1553–1557. [33] D.C. Duncan, R.C. Chambers, E. Hecht, C.L. Hill, Mechanism and dynamics in the H3[PW12O40]–catalyzed selective epoxidation of terminal olefins by H2O2. formation, reactivity, and stability of {PO4[WO(O2)2]4}3, J. Am. Chem. Soc. 117 (2) (1995) 681–691. [34] Y.Y. Chen, J.Q. Zhuang, X.M. Liu, J.B. Gao, X.W. Han, X.H. Bao, N. Zhou, S. Gao, Z.W. Xi, On the nature of reaction–controlled phase transfer catalysts for epoxidation of olefin: A 31P NMR investigation, Catal. Lett. 93 (1-2) (2004) 41–46. [35] T. Okuhara, M. Mizuno, M. Misono, Catalytic chemistry of heteropoly compounds, Adv. Catal. 41 (1996) 113–252. [36] A.M. Hyde, S.L. Zultanski, J.H. Waldman, Y.L. Zhong, M. Shevlin, F. Peng, General principles and strategies for salting–out informed by the hofmeister series, Org. Process Res. Dev. 21 (9) (2017) 1355–1370. [37] J.Y.Z. Zhang, Y.D. Wang, G.W. Stevens, W.Y. Fei, An experimental study on single drop rising in a low interfacial tension liquid–liquid system, Chem. Eng. Res. Des. 148 (2019) 349–360. [38] T.A.G. Duarte, A.C. Estrada, M.M.Q. Simoes, I.C.M.S Santos, A.M.V. Cavaleiro, M.G.P.M.S. Neves, J.A.S. Cavaleiro, Homogeneous catalytic oxidation of styrene and styrene derivatives with hydrogen peroxide in the presence of transition metal–substituted polyoxotungstates, Catal. Sci. Technol. 5 (1) (2015) 351–363. [39] W.Q. Yuan, S.Q. Zhou, Y.Y. Jiang, H.H. Li, H.D. Zheng, Organocatalyzed styrene epoxidation accelerated by continuous–flow reactor, J. Flow Chem. 10 (1) (2020) 227–234. [40] O.A. Kholdeeva, O.V. Zalomaeva, Recent advances in transition–metal–catalyzed selective oxidation of substituted phenols and methoxyarenes with environmentally benign oxidants, Coord. Chem. Rev. 306 (2016) 302–330. [41] H. Taghiyar, B. Yadollahi, New perspective to catalytic epoxidation of olefins by Keplerate containing Keggin polyoxometalates, Polyhedron 156 (2018) 98–104. [42] Y. Lu, X. Zhang, X.B. Cui, J.Q. Xu, A series of compounds based on [P2W18O62]6- and transition metal mixed organic ligand complexes with high catalytic properties for styrene epoxidation, Inorg. Chem. 57 (17) (2018) 11123–11134. [43] Z.L. Shi, C.Z. Mei, G.Q. Niu, Q.X. Han, Two inorganic-organic hybrids based on a polyoxometalate: Structures, characterizations, and epoxidation of olefins, J. Coord. Chem. 71 (9) (2018) 1460–1468. [44] A. Hachemaoui, A. Yahiaoui, M. Belbachir, Structural and photooxidation studies of poly(styrene oxide) prepared with maghnite–H+ as cationic catalyst, J. Appl. Polym. Sci. 110 (5) (2008) 3195–3202. [45] H. Misaka, R. Sakai, T. Satoh, T. Kakuchi, Synthesis of high molecular weight and end–functionalized poly(styrene oxide) by living ring–opening polymerization of styrene oxide using the alcohol/phosphazene base initiating system, Macromolecules 44 (23) (2011) 9099–9107. [46] A. Yahiaoui, M. Belbachir, J.C. Soutif, L. Fontaine, Synthesis and structural analyses of poly (1, 2–cyclohexene oxide) over solid acid catalyst, Mater. Lett. 59 (7) (2005) 759–767. |