[1] D.S. Ma, H. Yi, C. Lai, X.G. Liu, X.Q. Huo, Z.W. An, L. Li, Y.K. Fu, B.S. Li, M.M. Zhang, L. Qin, S.Y. Liu, L. Yang, Critical review of advanced oxidation processes in organic wastewater treatment, Chemosphere 275 (2021) 130104. [2] J.J. Rueda-Marquez, I. Levchuk, P. Fernández Ibañez, M. Sillanpää, A critical review on application of photocatalysis for toxicity reduction of real wastewaters, J. Clean. Prod. 258 (2020) 120694. [3] Y.Q. Yang, J.X. Guo, Z.F. Cheng, W.M. Wu, J.J. Zhang, J.W. Zhang, Z.G. Yang, D.S. Zhang, New composite viscosity reducer with both asphaltene dispersion and emulsifying capability for heavy and ultraheavy crude oils, Energy Fuels 31 (2) (2017) 1159–1173. [4] P. Kundu, V. Paul, V. Kumar, I.M. Mishra, Formulation development, modeling and optimization of emulsification process using evolving RSM coupled hybrid ANN-GA framework, Chem. Eng. Res. Des. 104 (2015) 773–790. [5] K. Wang, G.S. Luo, Microflow extraction: A review of recent development, Chem. Eng. Sci. 169 (2017) 18–33. [6] P.L. Mills, D.J. Quiram, J.F. Ryley, Microreactor technology and process miniaturization for catalytic reactions—A perspective on recent developments and emerging technologies, Chem. Eng. Sci. 62 (24) (2007) 6992–7010. [7] J. Tan, J.H. Xu, S.W. Li, G.S. Luo, Drop dispenser in a cross-junction microfluidic device: Scaling and mechanism of break-up, Chem. Eng. J. 136 (2–3) (2008) 306–311. [8] G.F. Christopher, S.L. Anna, Microfluidic methods for generating continuous droplet streams, J. Phys. D: Appl. Phys. 40 (19) (2007) R319–R336. [9] F.Y. Ushikubo, F.S. Birribilli, D.R.B. Oliveira, R.L. Cunha, Y- and T-junction microfluidic devices: Effect of fluids and interface properties and operating conditions, Microfluid. Nanofluidics 17 (4) (2014) 711–720. [10] T. Roques-Carmes, H. Monnier, J.F. Portha, P. Marchal, L. Falk, Influence of the plate-type continuous micro-separator dimensions on the efficiency of demulsification of oil-in-water emulsion, Chem. Eng. Res. Des. 92 (11) (2014) 2758–2769. [11] Z.D. Ma, Y.D. Pu, D. Hamiti, M.X. Wei, X. Chen, Elaboration of the demulsification process of W/O emulsion with three-dimensional electric spiral plate-type microchannel, Micromachines 10 (11) (2019) 751. [12] E. Kolehmainen, I. Turunen, Micro-scale liquid–liquid separation in a plate-type coalescer, Chem. Eng. Process. Process. Intensif. 46 (9) (2007) 834–839. [13] D. Ciceri, J.M. Perera, G.W. Stevens, The use of microfluidic devices in solvent extraction, J. Chem. Technol. Biotechnol. 89 (6) (2014) 771–786. [14] C.X. Fan, R. Ma, Y.B. Wang, J.H. Luo, Demulsification of oil-in-water emulsions in a novel rotating microchannel, Ind. Eng. Chem. Res. 59 (17) (2020) 8335–8345. [15] H. Wang, B.X. Quan, X.Q. An, Y. Yang, C. Tian, Advanced decomposition of coking wastewater in relation to total organic carbon using an electrochemical system, Pol. J. Environ. Stud. 26 (2) (2017) 941–947. [16] B. Chakrabarty, A.K. Ghoshal, M.K. Purkait, Cross-flow ultrafiltration of stable oil-in-water emulsion using polysulfone membranes, Chem. Eng. J. 165 (2) (2010) 447–456. [17] M. Hlavacek, Break-up of oil-in-water emulsions induced by permeation through a microfiltration membrane, J. Membr. Sci. 102 (1995) 1–7. [18] S. Kasemset, A. Lee, D.J. Miller, B.D. Freeman, M.M. Sharma, Effect of polydopamine deposition conditions on fouling resistance, physical properties, and permeation properties of reverse osmosis membranes in oil/water separation, J. Membr. Sci. 425-426 (2013) 208–216. [19] G.L. Mo, H. Liu, S. Dai, Y.B. Wang, J. Li, J.H. Luo, Extraction of Fe3+ from NaH2PO4 solution in a spiral microchannel device, Chem. Eng. Process. Process. Intensif. 144 (2019) 107654. [20] F. Kubota, M. Goto, F. Nakashio, Extraction of rare earth metals with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester in the presence of diethylenetriaminepentaacetic acid in aqueous phase, Solvent Extr. Ion Exch. 11 (3) (1993) 437–453. [21] Z. Chen, W.T. Wang, F.N. Sang, J.H. Xu, G.S. Luo, Y.D. Wang, Fast extraction and enrichment of rare earth elements from waste water via microfluidic-based hollow droplet, Sep. Purif. Technol. 174 (2017) 352–361. [22] M.A. Rother, R.H. Davis, Simplified model for droplet growth in shear flow, AIChE J. 49 (2) (2003) 546–548. [23] B.E. Priore, L.M. Walker, Coalescence analysis through small-angle light scattering, AIChE J. 47 (12) (2001) 2644–2652. [24] S.P. Lyu, F.S. Bates, C.W. Macosko, Coalescence in polymer blends during shearing, AIChE J. 46 (2) (2000) 229–238. [25] Y.C. Zhao, G.W. Chen, Q. Yuan, Liquid–liquid two-phase flow patterns in a rectangular microchannel, AIChE J. 52 (12) (2006) 4052–4060. [26] F.N. Sang, Z. Chen, Y.D. Wang, J.H. Xu, Dynamic formation and scaling law of hollow droplet with gas/oil/water system in dual-coaxial microfluidic devices, AIChE J. 64 (2) (2018) 730–739. [27] F. Scheiff, M. Mendorf, D. Agar, N. Reis, M. Mackley, The separation of immiscible liquid slugs within plastic microchannels using a metallic hydrophilic sidestream, Lab Chip 11 (6) (2011) 1022–1029. [28] C. Chao, G.W. Xu, X.F. Fan, Effect of surface tension, viscosity, pore geometry and pore contact angle on effective pore throat, Chem. Eng. Sci. 197 (2019) 269–279. [29] A.L. Dessimoz, L. Cavin, A. Renken, L. Kiwi-Minsker, Liquid–liquid two-phase flow patterns and mass transfer characteristics in rectangular glass microreactors, Chem. Eng. Sci. 63 (16) (2008) 4035–4044. [30] M. N Kashid, A. Renken, L. Kiwi-Minsker, Influence of flow regime on mass transfer in different types of microchannels, Ind. Eng. Chem. Res. 50 (11) (2011) 6906–6914. [31] E. Buckingham, On physically similar systems; Illustrations of the use of dimensional equations, Phys. Rev. 4 (4) (1914) 345–376. [32] S.K.R. Cherlo, S. Kariveti, S. Pushpavanam, Experimental and numerical investigations of two-phase (liquid–liquid) flow behavior in rectangular microchannels, Ind. Eng. Chem. Res. 49 (2) (2010) 893–899. [33] A.V. Minakov, A.A. Shebeleva, A.A. Yagodnitsyna, A.V. Kovalev, A.V. Bilsky, Flow regimes of viscous immiscible liquids in T-type microchannels, Chem. Eng. Technol. 42 (5) (2019) 1037–1044. [34] M. Darekar, K.K. Singh, S. Mukhopadhyay, K.T. Shenoy, Liquid–liquid two-phase flow patterns in Y-junction microchannels, Ind. Eng. Chem. Res. 56 (42) (2017) 12215–12226. |