[1] F. Bemporad, F. Chiti, Protein misfolded oligomers: experimental approaches, mechanism of formation, and structure-toxicity relationships, Chem. Biol. 19 (3) (2012) 315–327.https://pubmed.ncbi.nlm.nih.gov/22444587/ [2] H.M. Fan, R.X. Gu, Y.J. Wang, Y.L. Pi, Y.H. Zhang, Q. Xu, D.Q. Wei, Destabilization of Alzheimer's Aβ42 protofibrils with a novel drug candidate wgx-50 by molecular dynamics simulations, J. Phys. Chem. B 119 (34) (2015) 11196–11202. 10.1021/acs.jpcb.5b03116 [3] M. Margittai, R. Langen, Template-assisted filament growth by parallel stacking of tau, PNAS 101 (28) (2004) 10278–10283. [4] M. von Bergen, S. Barghorn, J. Biernat, E.M. Mandelkow, E. Mandelkow, Tau aggregation is driven by a transition from random coil to beta sheet structure, Biochim. Biophys. Acta 1739 (2–3) (2005) 158–166.https://pubmed.ncbi.nlm.nih.gov/15615635/ [5] S. Jeganathan, M. von Bergen, E.M. Mandelkow, E. Mandelkow, The natively unfolded character of tau and its aggregation to alzheimer-like paired helical filaments, Biochemistry 47 (40) (2008) 10526–10539.https://pubmed.ncbi.nlm.nih.gov/18783251/ [6] R. Morales, L.D. Estrada, R. Diaz-Espinoza, D. Morales-Scheihing, M.C. Jara, J. Castilla, C. Soto, Molecular cross talk between misfolded proteins in animal models of Alzheimer's and prion diseases, J. Neurosci. 30 (13) (2010) 4528–4535.https://pubmed.ncbi.nlm.nih.gov/20357103/ [7] M.I. Ivanova, Y.X. Lin, Y.H. Lee, J. Zheng, A. Ramamoorthy, Biophysical processes underlying cross-seeding in amyloid aggregation and implications in amyloid pathology, Biophys. Chem. 269 (2021) 106507.http://dx.doi.org/10.1016/j.bpc.2020.106507 [8] Y.X. Zhang, M.Z. Zhang, Y.L. Liu, D. Zhang, Y.J. Tang, B.P. Ren, J. Zheng, Dual amyloid cross-seeding reveals steric zipper-facilitated fibrillization and pathological links between protein misfolding diseases, J. Mater. Chem. B 9 (15) (2021) 3300–3316. [9] Y. Wang, G.T. Westermark, The amyloid forming peptides islet amyloid polypeptide and amyloid beta interact at the molecular level, Int. J. Mol. Sci. 22 (20) (2021)11153. [10] Y. Liang, W.J. Wang, Y. Sun, X.Y. Dong, Insights into the cross-amyloid aggregation of Aβ40 and its N-terminal truncated peptide Aβ 11-40 affected by epigallocatechin gallate, Chin. J. Chem. Eng. 45 ( 2022 ) 284 – 293 [11] M.Z. Zhang, R.D. Hu, H. Chen, Y. Chang, X. Gong, F.F. Liu, J. Zheng, Interfacial interaction and lateral association of cross-seeding assemblies between hIAPP and rIAPP oligomers, Phys. Chem. Chem. Phys. 17 (16) (2015) 10373–10382.https://pubmed.ncbi.nlm.nih.gov/25706385/ [12] K. Konstantoulea, P. Guerreiro, M. Ramakers, N. Louros, L.D. Aubrey, B. Houben, E. Michiels, M. de Vleeschouwer, Y. Lampi, L.F. Ribeiro, J. de Wit, W.F. Xue, J. Schymkowitz, F. Rousseau, Heterotypic Amyloid β interactions facilitate amyloid assembly and modify amyloid structure, EMBO J. 41 (2) (2022) e108591.https://pubmed.ncbi.nlm.nih.gov/34842295/ [13] Y.J. Tang, D. Zhang, Y.L. Liu, Y.X. Zhang, Y.F. Zhou, Y. Chang, B.W. Zheng, A. Xu, J. Zheng, A new strategy to reconcile amyloid cross-seeding and amyloid prevention in a binary system of α-synuclein fragmental peptide and hIAPP, Protein Sci. 31 (2) (2022) 485–497.http://dx.doi.org/10.1002/pro.4247 [14] G.X. Zhang, L.X. Meng, Z.H. Wang, Q.Y. Peng, G.Q. Chen, J. Xiong, Z.T. Zhang, Islet amyloid polypeptide cross-seeds tau and drives the neurofibrillary pathology in Alzheimer's disease, Mol. Neurodegener. 17 (2022) 12. 10.1186/s13024-022-00518-y [15] Y. Yang, W. Song, Molecular links between Alzheimer's disease and diabetes mellitus, Neuroscience 250 (2013) 140–150.https://pubmed.ncbi.nlm.nih.gov/23867771/ [16] Y.X. Zhang, Y.J. Tang, D. Zhang, Y.L. Liu, J. He, Y. Chang, J. Zheng, Amyloid cross-seeding between Aβ and hIAPP in relation to the pathogenesis of Alzheimer and type 2 diabetes, Chin. J. Chem. Eng. 30 (2021) 225–235.http://dx.doi.org/10.1016/j.cjche.2020.09.033 [17] L. Iaccarino, G. Tammewar, N. Ayakta, S.L. Baker, A. Bejanin, A.L. Boxer, M.L. Gorno-Tempini, M. Janabi, J.H. Kramer, A. Lazaris, S.N. Lockhart, B.L. Miller, Z.A. Miller, J.P. O'Neil, R. Ossenkoppele, H.J. Rosen, D.R. Schonhaut, W.J. Jagust, G.D. Rabinovici, Local and distant relationships between amyloid, tau and neurodegeneration in Alzheimer's Disease, Neuroimage Clin. 17 (2018) 452–464.http://dx.doi.org/10.1016/j.nicl.2017.09.016 [18] M.A. Busche, S. Wegmann, S. Dujardin, C. Commins, J. Schiantarelli, N. Klickstein, T.V. Kamath, G.A. Carlson, I. Nelken, B.T. Hyman, Tau impairs neural circuits, dominating amyloid-β effects, in Alzheimer models in vivo, Nat. Neurosci. 22 (1) (2019) 57–64. 10.1038/s41593-018-0289-8 [19] M.A. Busche, B.T. Hyman, Synergy between amyloid-β and tau in Alzheimer's disease, Nat. Neurosci. 23 (10) (2020) 1183–1193. 10.1038/s41593-020-0687-6 [20] B. Vasconcelos, I.C. Stancu, A. Buist, M. Bird, P. Wang, A. Vanoosthuyse, K. Kolen, A. Verheyen, P. Kienlen-Campard, J.N. Octave, P. Baatsen, D. Moechars, I. Dewachter, Heterotypic seeding of Tau fibrillization by pre-aggregated Abeta provides potent seeds for prion-like seeding and propagation of Tau-pathology in vivo, Acta Neuropathol. 131 (4) (2016) 549–569.http://dx.doi.org/10.1007/s00401-015-1525-x [21] R.E. Bennett, S.L. DeVos, S. Dujardin, B. Corjuc, R. Gor, J. Gonzalez, A.D. Roe, M.P. Frosch, R. Pitstick, G.A. Carlson, B.T. Hyman, Enhanced tau aggregation in the presence of amyloid Β, Am. J. Pathol. 187 (7) (2017) 1601–1612.http://dx.doi.org/10.1016/j.ajpath.2017.03.011 [22] Z.H. He, J.L. Guo, J.D. McBride, S. Narasimhan, H. Kim, L. Changolkar, B. Zhang, R.J. Gathagan, C.Y. Yue, C. Dengler, A. Stieber, M. Nitla, D.A. Coulter, T. Abel, K.R. Brunden, J.Q. Trojanowski, V.M.Y. Lee, Amyloid-β plaques enhance Alzheimer's brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation, Nat. Med. 24 (1) (2018) 29–38. 10.1038/nm.4443 [23] J. Lewis, D.W. Dickson, W.L. Lin, L. Chisholm, A. Corral, G. Jones, S.H. Yen, N. Sahara, L. Skipper, D. Yager, C. Eckman, J. Hardy, M. Hutton, E. McGowan, Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP, Science 293 (5534) (2001) 1487–1491.https://pubmed.ncbi.nlm.nih.gov/11520987/ [24] T. Tripathi, H. Khan, Direct interaction between the β-amyloid core and tau facilitates cross-seeding: a novel target for therapeutic intervention, Biochemistry 59 (4) (2020) 341–342. 10.1021/acs.biochem.9b01087 [25] C. Wallin, Y. Hiruma, S. Warmlander, I. Huvent, J. Jarvet, J.P. Abrahams, A. Graslund, G. Lippens, J. Luo, The neuronal tau protein blocks in vitro fibrillation of the amyloid-beta (Abeta) peptide at the oligomeric stage, J Am Chem Soc, 140 (26) (2018) 8138–8146. [26] P.H. Nguyen, A. Ramamoorthy, B.R. Sahoo, J. Zheng, P. Faller, J.E. Straub, L. Dominguez, J.E. Shea, N.V. Dokholyan, A. de Simone, B.Y. Ma, R. Nussinov, S. Najafi, S.T. Ngo, A. Loquet, M. Chiricotto, P. Ganguly, J. McCarty, M.S. Li, C. Hall, Y.M. Wang, Y. Miller, S. Melchionna, B. Habenstein, S. Timr, J.X. Chen, B. Hnath, B. Strodel, R. Kayed, S. Lesné, G.H. Wei, F. Sterpone, A.J. Doig, P. Derreumaux, Amyloid oligomers: a joint experimental/computational perspective on Alzheimer's disease, Parkinson's disease, type II diabetes, and amyotrophic lateral sclerosis, Chem. Rev. 121 (4) (2021) 2545–2647. 10.1021/acs.chemrev.0c01122 [27] Y. Miller, B.Y. Ma, R. Nussinov, Synergistic interactions between repeats in tau protein and aβ amyloids may be responsible for accelerated aggregation via polymorphic states, Biochemistry 50 (23) (2011) 5172–5181. 10.1021/bi200400u [28] Y. Atsmon-Raz, Y. Miller, Non-amyloid-β component of human α-synuclein oligomers induces formation of new aβ oligomers: insight into the mechanisms that link Parkinson's and Alzheimer's diseases, ACS Chem. Neurosci. 7 (1) (2016) 46–55. 10.1021/acschemneuro.5b00204 [29] L. Ciccone, C.H. Shi, D. di Lorenzo, A.C. van Baelen, N. Tonali, The positive side of the Alzheimer's disease amyloid cross-interactions: the case of the aβ 1-42 peptide with tau, TTR, CysC, and ApoA1, Molecules 25 (10) (2020) 2439. 10.3390/molecules25102439 [30] Y. Atsmon-Raz, Y. Miller, Insight into atomic resolution of the cross-seeding between tau/mutated tau and amyloid-β in neurodegenerative diseases, Isr. J. Chem. 55 (6–7) (2015) 628–636.http://dx.doi.org/10.1002/ijch.201400162 [31] A.V. Rojas, G.G. Maisuradze, H.A. Scheraga, Dependence of the formation of tau and aβ peptide mixed aggregates on the secondary structure of the N-terminal region of aβ, J. Phys. Chem. B 122 (28) (2018) 7049–7056. 10.1021/acs.jpcb.8b04647 [32] R.X. Qi, Y. Luo, G.H. Wei, R. Nussinov, B.Y. Ma, Aβ “stretching-and-packing” cross-seeding mechanism can trigger tau protein aggregation, J. Phys. Chem. Lett. 6 (16) (2015) 3276–3282.http://dx.doi.org/10.1021/acs.jpclett.5b01447 [33] L. Gremer, D. Schölzel, C. Schenk, E. Reinartz, J. Labahn, R.B.G. Ravelli, M. Tusche, C. Lopez-Iglesias, W. Hoyer, H. Heise, D. Willbold, G.F. Schröder, Fibril structure of amyloid-β(1–42) by cryo–electron microscopy, Science 358 (6359) (2017) 116–119. 10.1126/science.aao2825 [34] A. Fitzpatrick, B. Falcon, S. He, A.G. Murzin, G. Murshudov, H.J. Garringer, R.A. Crowther, B. Ghetti, M. Goedert, S. Scheres, Cryo-EM structures of tau filaments from Alzheimer's disease, Nature 547 (7662) (2017) 185–190.https://pubmed.ncbi.nlm.nih.gov/28678775/ [35] C. Dominguez, R. Boelens, A.M.J.J. Bonvin, HADDOCK: a protein-protein docking approach based on biochemical or biophysical information, J. Am. Chem. Soc. 125 (7) (2003) 1731–1737.https://pubmed.ncbi.nlm.nih.gov/12580598/ [36] J.C. Gordon, J.B. Myers, T. Folta, V. Shoja, L.S. Heath, A. Onufriev, H++: a server for estimating pKas and adding missing hydrogens to macromolecules, Nucleic Acids Res. 33 (Web Server issue) (2005) W368–W371.https://pubmed.ncbi.nlm.nih.gov/15980491/ [37] R. Anandakrishnan, B. Aguilar, A.V. Onufriev, H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations, Nucleic Acids Res. 40 (Web Server issue) (2012) W537–W541.https://pubmed.ncbi.nlm.nih.gov/22570416/ [38] J. Myers, G. Grothaus, S. Narayanan, A. Onufriev, A simple clustering algorithm can be accurate enough for use in calculations of pKs in macromolecules, Proteins 63 (4) (2006) 928–938.https://pubmed.ncbi.nlm.nih.gov/16493626/ [39] X. Daura, K. Gademann, B. Jaun, D. Seebach, W.F. van Gunsteren, A.E. Mark, Peptide folding: when simulation meets experiment, Angew. Chem. Int. Ed. 38 (1–2) (1999) 236–240. 10.1002/(sici)1521-3773(19990115)38:1/2%3c236::aid-anie236%3e3.0.co;2-m [40] D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, GROMACS: fast, flexible, and free, J. Comput. Chem. 26 (16) (2005) 1701–1718. 10.1002/jcc.20291 [41] J. Huang, A.D. MacKerell Jr, CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data, J. Comput. Chem. 34 (25) (2013) 2135–2145.http://dx.doi.org/10.1002/jcc.23354 [42] T. Darden, D. York, L. Pedersen, Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems, J. Chem. Phys. 98 (12) (1993) 10089–10092.http://dx.doi.org/10.1063/1.464397 [43] L. Verlet, Computer “experiments” on classical fluids. I. thermodynamical properties of lennard-Jones molecules, Phys. Rev. 159 (1) (1967) 98–103. 10.1103/physrev.159.98 [44] B. Hess, H. Bekker, H.J.C. Berendsen, J.G.E.M. Fraaije, LINCS: a linear constraint solver for molecular simulations, J. Comput. Chem. 18 (12) (1997) 1463–1472.http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12%3C1463::AID-JCC4%3E3.0.CO;2-H [45] U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103 (19) (1995) 8577–8593.http://dx.doi.org/10.1063/1.470117 [46] M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: a new molecular dynamics method, J. Appl. Phys. 52 (12) (1981) 7182–7190.http://dx.doi.org/10.1063/1.328693 [47] A. Bondi, Van der waals volumes and radii, J. Phys. Chem. 68 (3) (1964) 441–451. 10.1021/j100785a001 [48] C.Q. Bai, D.D. Lin, Y.X. Mo, J.T. Lei, Y.X. Sun, L.G. Xie, X.J. Yang, G.H. Wei, Influence of fullerenol on hIAPP aggregation: amyloid inhibition and mechanistic aspects, Phys. Chem. Chem. Phys. 21 (7) (2019) 4022–4031. 10.1039/c8cp07501h [49] W. Kabsch, C. Sander, Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features, Biopolymers 22 (12) (1983) 2577–2637.https://pubmed.ncbi.nlm.nih.gov/6667333/ [50] W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph. 14 (1) (1996) 33–38.http://dx.doi.org/10.1016/0263-7855(96)00018-5 [51] R. Kumari, R. Kumar, O.S.D.D. Consortium, A. Lynn, G_mmpbsa: a GROMACS tool for high-throughput MM-PBSA calculations, J. Chem. Inf. Model. 54 (7) (2014) 1951–1962.https://pubmed.ncbi.nlm.nih.gov/24850022/ [52] S. Linse, Mechanism of amyloid protein aggregation and the role of inhibitors, Pure Appl. Chem. 91 (2) (2019) 211–229. 10.1515/pac-2018-1017 [53] S. Hou, R.X. Gu, D.Q. Wei, Inhibition of β-amyloid channels with a drug candidate wgx-50 revealed by molecular dynamics simulations, J. Chem. Inf. Model. 57 (11) (2017) 2811–2821. 10.1021/acs.jcim.7b00452 [54] M.P. Tang, Z.X. Wang, Y. Zhou, W.J. Xu, S.T. Li, L.Y. Wang, D.Q. Wei, Z.D. Qiao, A novel drug candidate for Alzheimer's disease treatment: gx-50 derived from Zanthoxylum bungeanum, J. Alzheimers Dis. 34 (1) (2013) 203–213.https://pubmed.ncbi.nlm.nih.gov/23186988/ [55] G. Favrin, A. Irbäck, S. Mohanty, Oligomerization of amyloid Aβ16-22 peptides using hydrogen bonds and hydrophobicity forces, Biophys. J. 87 (6) (2004) 3657–3664.http://dx.doi.org/10.1529/biophysj.104.046839 |