[1] D.Y. Liu, L.Y. Cao, G.H. Zhang, L. Zhao, J.S. Gao, C.M. Xu, Catalytic conversion of light alkanes to aromatics by metal-containing HZSM-5 zeolite catalysts—A review, Fuel Process. Technol. 216 (2021). [2] M. Fakhroleslam, S.M. Sadrameli, Thermal cracking of hydrocarbons for the production of light olefins; A review on optimal process design, operation, and control, Ind. Eng. Chem. Res. 59 (27) (2020) 12288–12303. [3] A. Corma, E. Corresa, Y. Mathieu, L. Sauvanaud, S. Al-Bogami, M.S. Al-Ghrami, A. Bourane, Crude oil to chemicals: light olefins from crude oil, Catal. Sci. Technol. 7 (1) (2017) 12–46.10.1039/c6cy01886f [4] A. Akah, J. Williams, M. Ghrami, An overview of light olefins production via steam enhanced catalytic cracking, Catal. Surv. From Asia 23 (4) (2019) 265–276. [5] V. Blay, B. Louis, R. Miravalles, T. Yokoi, K.A. Peccatiello, M. Clough, B. Yilmaz, Engineering zeolites for catalytic cracking to light olefins, ACS Catal. 7 (10) (2017) 6542–6566. [6] S.M. Sadrameli, Thermal/catalytic cracking of hydrocarbons for the production of olefins: a state-of-the-art review I: thermal cracking review, Fuel 140 (2015) 102–115. [7] S.M. Sadrameli, Thermal/catalytic cracking of liquid hydrocarbons for the production of olefins: a state-of-the-art review II: catalytic cracking review, Fuel 173 (2016) 285–297. [8] Y.E. Bai, G.H. Zhang, D.Y. Liu, Y.H. Zhang, L. Zhao, J.S. Gao, C.M. Xu, Q.F. Meng, X.H. Gao, The advance in catalytic pyrolysis of naphtha technology using ZSM-5 as catalyst, Appl. Catal. A Gen. 628 (2021) 118399.0.1016/j.apcata.2021.118399 [9] M.F. Alotibi, B.A. Alshammari, M.H. Alotaibi, F.M. Alotaibi, S. Alshihri, R.M. Navarro, J.L.G. Fierro, ZSM-5 zeolite based additive in FCC process: a review on modifications for improving propylene production, Catal. Surv. From Asia 24 (1) (2020) 1–10.0.1007/s10563-019-09285-1 [10] S.M. Alipour, Recent advances in naphtha catalytic cracking by nano ZSM-5: a review, Chin. J. Catal. 37 (5) (2016) 671–680.0.1016/S1872-2067(15)61091-9 [11] N. Rahimi, R. Karimzadeh, Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: a review, Appl. Catal. A Gen. 398 (1–2) (2011) 1–17.0.1016/j.apcata.2011.03.009 [12] A. Corma, A.V. Orchillés, Current views on the mechanism of catalytic cracking, Microporous Mesoporous Mater. 35-36 (2000) 21–30.0.1016/S1387-1811(99)00205-X [13] H. Persson, I. Duman, S. Wang, L.J. Pettersson, W. Yang, Catalytic pyrolysis over transition metal-modified zeolites: a comparative study between catalyst activity and deactivation, J. Anal. Appl. Pyrolysis 138 (2019) 54–61.0.1016/j.jaap.2018.12.005 [14] C.H. Bartholomew, Mechanisms of catalyst deactivation, Appl. Catal. A Gen. 212 (1–2) (2001) 17–60.0.1016/S0926-860X(00)00843-7 [15] J.A. Moulijn, A.E. van Diepen, F. Kapteijn, Catalyst deactivation: is it predictable? : what to do? Appl. Catal. A Gen. 212 (1–2) (2001) 3–16.0.1016/S0926-860X(00)00842-5 [16] H.S. Cerqueira, G. Caeiro, L. Costa, F.R. Ribeiro, Deactivation of FCC catalysts, J. Mol. Catal. A Chem. 292 (1–2) (2008) 1–13.0.1016/j.molcata.2008.06.014 [17] M. Guisnet, L. Costa, F.R. Ribeiro, Prevention of zeolite deactivation by coking, J. Mol. Catal. A Chem. 305 (1–2) (2009) 69–83.0.1016/j.molcata.2008.11.012 [18] S. Mahamulkar, K.H. Yin, P.K. Agrawal, R.J. Davis, C.W. Jones, A. Malek, H. Shibata, Formation and oxidation/gasification of carbonaceous deposits: a review, Ind. Eng. Chem. Res. 55 (37) (2016) 9760–9818.10.1021/acs.iecr.6b02220 [19] M. Fakhroleslam, S.M. Sadrameli, Thermal/catalytic cracking of hydrocarbons for the production of olefins; a state-of-the-art review III: process modeling and simulation, Fuel 252 (2019) 553–566.0.1016/j.fuel.2019.04.127 [20] E. Ivanchina, E. Ivashkina, G. Nazarova, Mathematical modelling of catalytic cracking riser reactor, Chem. Eng. J. 329 (2017) 262–274.0.1016/j.cej.2017.04.098 [21] M. Sedighi, K. Keyvanloo, J. Towfighi, Kinetic study of steam catalytic cracking of naphtha on a Fe/ZSM-5 catalyst, Fuel 109 (2013) 432–438.0.1016/j.fuel.2013.02.020 [22] T. Cordero-Lanzac, A.T. Aguayo, A.G. Gayubo, P. Castaño, J. Bilbao, Simultaneous modeling of the kinetics for n-pentane cracking and the deactivation of a HZSM-5 based catalyst, Chem. Eng. J. 331 (2018) 818–830.0.1016/j.cej.2017.08.106 [23] T. Cordero-Lanzac, A.T. Aguayo, P. Castaño, J. Bilbao, Kinetics and reactor modeling of the conversion of n-pentane using HZSM-5 catalysts with different Si/Al ratios, React. Chem. Eng. 4 (11) (2019) 1922–1934.10.1039/c9re00222g [24] A. Afshar Ebrahimi, H. Mousavi, H. Bayesteh, J. Towfighi, Nine-lumped kinetic model for VGO catalytic cracking; using catalyst deactivation, Fuel 231 (2018) 118–125.0.1016/j.fuel.2018.04.126 [25] X. Hou, Y. Qiu, X.W. Zhang, G.Z. Liu, Analysis of reaction pathways for n-pentane cracking over zeolites to produce light olefins, Chem. Eng. J. 307 (2017) 372–381.0.1016/j.cej.2016.08.047 [26] X. Hou, Y. Qiu, X.W. Zhang, G.Z. Liu, Effects of regeneration of ZSM-5 based catalysts on light olefins production in n-pentane catalytic cracking, Chem. Eng. J. 321 (2017) 572–583.0.1016/j.cej.2017.03.127 [27] X. Hou, Y. Qiu, E.X. Yuan, F.Q. Li, Z.Z. Li, S. Ji, Z.N. Yang, G.Z. Liu, X.W. Zhang, Promotion on light olefins production through modulating the reaction pathways for n-pentane catalytic cracking over ZSM-5 based catalysts, Appl. Catal. A Gen. 543 (2017) 51–60.0.1016/j.apcata.2017.06.013 [28] X. Hou, Y. Qiu, Y.J. Tian, Z.H. Diao, X.W. Zhang, G.Z. Liu, Reaction pathways of n-pentane cracking on the fresh and regenerated Sr, Zr and La-loaded ZSM-5 zeolites, Chem. Eng. J. 349 (2018) 297–308.0.1016/j.cej.2018.05.026 [29] X. Hou, L. Zhao, Z. Ma, B. Chen, J. Feng, T. Cui, Effects of operating conditions on the catalytic performance of HZSM-5 zeolites in n-pentane cracking, China Pet. Process. Petrochem. T. 23(1) (2021) 67-75. [30] X. Hou, L. Zhao, Z.H. Diao, Roles of alkenes and coke formation in the deactivation of ZSM-5 zeolites during n-pentane catalytic cracking, Catal. Lett. 150 (9) (2020) 2716–2725.0.1007/s10562-020-03173-4 [31] X. Hou, B.C. Chen, Z.Z. Ma, J.T. Zhang, Y.H. Ning, D.H. Zhang, L. Zhao, E.X. Yuan, T.T. Cui, Empirical modeling of normal/cyclo-alkanes pyrolysis to produce light olefins, Chin. J. Chem. Eng. 42 (2022) 389–398.0.1016/j.cjche.2021.03.037 [32] X. Hou, Z.Z. Ma, B.C. Chen, J.T. Zhang, Y.H. Ning, L. Zhao, E.X. Yuan, Role of normal/cyclo-alkane in hydrocarbons pyrolysis process and product distribution, J. Anal. Appl. Pyrolysis 156 (2021) 105130.0.1016/j.jaap.2021.105130 [33] H. Konno, T. Tago, Y. Nakasaka, R. Ohnaka, J.I. Nishimura, T. Masuda, Effectiveness of nano-scale ZSM-5 zeolite and its deactivation mechanism on catalytic cracking of representative hydrocarbons of naphtha, Microporous Mesoporous Mater. 175 (2013) 25–33.0.1016/j.micromeso.2013.03.016 [34] Y.F. Zhang, X.L. Liu, L.Y. Sun, Q.H. Xu, X.J. Wang, Y.J. Gong, Catalytic cracking of n-hexane over HEU-1 zeolite for selective propylene production: Optimizing the SiO2/Al2O3 ratio by in situ synthesis, Fuel Process. Technol. 153 (2016) 163–172.0.1016/j.fuproc.2016.07.019 [35] A.A. Rownaghi, F. Rezaei, J. Hedlund, Selective formation of light olefin by n-hexane cracking over HZSM-5: influence of crystal size and acid sites of nano- and micrometer-sized crystals, Chem. Eng. J. 191 (2012) 528–533.0.1016/j.cej.2012.03.023 [36] Y. Nakasaka, J.I. Nishimura, T. Tago, T. Masuda, Deactivation mechanism of MFI-type zeolites by coke formation during n-hexane cracking, Chem. Eng. J. 278 (2015) 159–165.0.1016/j.cej.2014.11.026 [37] S. Jolly, J. Saussey, J.C. Lavalley, FT-IR study of hydrocarbon conversion on dealuminated HY zeolites in working conditions, J. Mol. Catal. 86 (1–3) (1994) 401–421.0.1016/0304-5102(93)E0156-B [38] F. Schmidt, C. Hoffmann, F. Giordanino, S. Bordiga, P. Simon, W. Carrillo-Cabrera, S. Kaskel, Coke location in microporous and hierarchical ZSM-5 and the impact on the MTH reaction, J. Catal. 307 (2013) 238–245.0.1016/j.jcat.2013.07.020 [39] V.N. Shetti, J. Kim, R. Srivastava, M. Choi, R. Ryoo, Assessment of the mesopore wall catalytic activities of MFI zeolite with mesoporous/microporous hierarchical structures, J. Catal. 254 (2) (2008) 296–303.0.1016/j.jcat.2008.01.006 [40] J. Kim, M. Choi, R. Ryoo, Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process, J. Catal. 269 (1) (2010) 219–228.0.1016/j.jcat.2009.11.009 [41] X. Xiao, Y.Y. Zhang, G.Y. Jiang, J. Liu, S.L. Han, Z. Zhao, R.P. Wang, C. Li, C.M. Xu, A.J. Duan, Y.J. Wang, J. Liu, Y.C. Wei, Simultaneous realization of high catalytic activity and stability for catalytic cracking of n-heptane on highly exposed (010) crystal planes of nanosheet ZSM-5 zeolite, Chem. Commun. 52 (65) (2016) 10068–10071.10.1039/c6cc03320b |