[1] M.A.R. Matos, M.S. Miranda, S.M.M. Pereira, V.M.F. Morais, J.F. Liebman, The experimental and calculational thermochemistry of 1, 2, 4, 5-benzenetetracarboxylic dianhydride: is this 10 pi multiring species aromatic? J. Phys. Chem. A 111 (30) (2007) 7181–7188 [2] R.T. Guo, Y. Wang, S. Heng, G.B. Zhu, V.S. Battaglia, H.H. Zheng, Pyromellitic dianhydride: a new organic anode of high electrochemical performances for lithium ion batteries, J. Power Sources 436 (2019) 226848 [3] V.V. Kaichev, G.Y. Popova, Y.A. Chesalov, A.A. Saraev, D.Y. Zemlyanov, S.A. Beloshapkin, A. Knop-Gericke, R. Schlögl, T.V. Andrushkevich, V.I. Bukhtiyarov, Selective oxidation of methanol to form dimethoxymethane and methyl formate over a monolayer V2O5/TiO2 catalyst, J. Catal. 311 (2014) 59–70 [4] V.V. Kaichev, Y.A. Chesalov, A.A. Saraev, A.Y. Klyushin, A. Knop-Gericke, T.V. Andrushkevich, V.I. Bukhtiyarov, Redox mechanism for selective oxidation of ethanol over monolayer V2O5/TiO2 catalysts, J. Catal. 338 (2016) 82–93 [5] T. Zhang, R.R. Zhang, Y.K. Zhang, Z.Q. Xie, Y.W. Li, H. Wu, F. Dai, R.X. Liu, Phosphoric acid: a key role in control of structure and properties of vanadium phosphorus oxide catalysts during synthesis, ChemistrySelect 6 (4) (2021) 513–521 [6] R. Marx, H.J. Wölk, G. Mestl, T. Turek, Reaction scheme of o-xylene oxidation on vanadia catalyst, Appl. Catal. A Gen. 398 (1–2) (2011) 37–43 [7] T. Aycan, F. Öztürk, H. Paşaoğlu, Investigation of structural, spectral and thermal properties of one-dimensional polymer containing pyromellitic acid and isonicotinamide, J. Mol. Struct. 1176 (2019) 685–694. [8] W.P. Schammel, D.K. John, Process for the production of trimellitic acid and pyromellitic acid by staged bromine addition in an oxidation of polyalkylaromatics, USA Pat., 4755622 (1985). [9] B.I. Kutepov, B.S. Bal'zhinimaev, Reasons for the deactivation of vanadia-titania catalysts for partial durene oxidation during prolonged performance, Kinet. Catal. 42 (3) (2001) 291-300. [10] B.A.Moiseevich, K.V.Viktorovich, S.R.Gazimovich, N.V.Filippovich, N.E.Nikolaevna, A.J.Mikhajlovich, Method of producing intramolecular anhydrides of benzene polycarboxylic acids. Rusian Pat., 2412178 (2009). [11] Y. Hu, N. Li, G. Li, A. Wang, Y. Cong, X. Wang, T. Zhang, Sustainable production of pyromellitic acid with pinacol and diethyl maleate, Green Chem. 19 (7) (2017) 1663-1667. [12] F. Cavani, C. Cortelli, A. Frattini, B. Panzacchi, V. Ravaglia, F. Trifiro, C. Fumagalli, R. Leanza, G. Mazzoni, The characterization of the V species and the identification of the promoting effect of dopants in V/Ti/O catalysts for o-xylene oxidation, Catal. Today 118 (3-4) (2006) 298-306 [13] A. Akbari, S.M. Alavi, The effect of cesium and antimony promoters on the performance of Ti-phosphate-supported vanadium(V) oxide catalysts in selective oxidation of o-xylene to phthalic anhydride, Chem. Eng. Res. Des. 102 (2015) 286–296. [14] G.J. Hutchings, Heterogeneous catalysts-discovery and design, J. Mater. Chem. 19 (9) (2009) 1222-1235 [15] N. Ballarini, A. Brentari, F. Cavani, S. Luciani, C. Cortelli, F. Cruzzolin, R. Leanza, A revision of the mechanism of o-xylene oxidation to phthalic anhydride with V/Ti/O catalysts, and the role of the promoter Cs, Catal. Today 142 (3–4) (2009) 181–184 [16] G. Deo, I.E. Wachs, Effect of additives on the structure and reactivity of the surface vanadium oxide phase in V2O5/TiO2 catalysts, J. Catal. 146 (2) (1994) 335–345. [17] B. Grzybowska-Swierkosz, Effect of additives on the physicochemical and catalytic properties of oxide catalysts in selective oxidation reactions, Top. Catal. 21 (1-3) (2002) 35-46. [18] J. Jimenez-Jimenez, J. Merida-Robles, E. Rodriguez-Castellon, A. Jimenez-Lopez, M.L. Granados, S. del Val, I.M. Cabrera, J.L.G. Fierro, Oxidation of o-xylene on mesoporous Ti-phosphate-supported VOx catalysts and promoter effect of K+ on selectivity, Catal. Today 99 (1-2) (2005) 179-186 [19] F. Rosowski, S. Altwasser, C.K. Dobner, S. Storck, J. Zühlke, H. Hibst, New silver- and vanadium-containing multimetal oxides for oxidation of aromatic hydrocarbons, Catal. Today 157 (1–4) (2010) 339–344 [20] C.B. Rodella, V.R. Mastelaro, Structural characterization of the V2O5/TiO2 system obtained by the Sol-gel method, J. Phys. Chem. Solids 64 (5) (2003) 833–839. [21] A. Gervasini, P. Carniti, J. Keranen, L. Niinisto, A. Auroux, Surface characteristics and activity in selective oxidation of o-xylene of supported V2O5 catalysts prepared by standard impregnation and atomic layer deposition, Catal. Today 96 (4) (2004) 187-194 [22] S.K. Maurya, P. Patil, S.B. Umbarkar, M.K. Gurjar, M. Dongare, S. Rudiger, E. Kemnitz, Vapor phase oxidation of 4-fluorotoluene over vanadia-titania catalyst, J. Mol. Catal. A Chem. 234 (1–2) (2005) 51–57. [23] O. Richter, G. Mestl, Deactivation of Commercial, High-load o-xylene feed VOx/TiO2 phthalic anhydride catalyst by unusual over-reduction, Catalysts 9 (5) (2019) 435 [24] L. Abello, E. Husson, Y. Repelin, G. Lucazeau, Vibrational spectra and valence force field of crystalline V2O5, Spectrochimica Acta A Mol. Spectrosc. 39 (7) (1983) 641–651. [25] F. Benabdelouahab, R. Olier, N. Guilhaume, F. Lefebvre, J.C. Volta, A study by insitu laser raman-spectroscopy of vpo catalysts for normal-butane oxidation to maleic-anhydride .1. preparation and characterization of pure reference phases, J. Catal. 134 (1) (1992) 151-167. [26] M. Sambi, G. Sangiovanni, G. Granozzi, F. Parmigiani, Growth and the structure of epitaxial VO2 at the TiO2(110) surface, Phys. Rev. B 55 (12) (1997) 7850-7858 [27] V. Lochař, H. Drobná, FTIR study of the interaction of crotonaldehyde and maleic anhydride with V2O5 and MoO3, Appl. Catal. A Gen. 269 (1–2) (2004) 27–31. |