[1] E. Drioli, A. Criscuoli, E. Curcio, Membrane Contactors: Fundamentals, Applications and Potentialities, Elsevier, Amsterdam, 2005. [2] Y. Zhang, R. Wang, Gas–liquid membrane contactors for acid gas removal: Recent advances and future challenges, Curr. Opin. Chem. Eng. 2(2) (2013) 255–262. [3] Z.P. Chan, L. Li, G.D. Kang, N. A. Manan, Y.M. Cao, T.H. Wang, Deep CO2 removal using high pressure membrane contactors with low liquid-to-gas ratio, Chem. Eng. Res. Des. 153 (2020) 528–536. [4] N.G.P. Chew, S.S. Zhao, R. Wang, Recent advances in membrane development for treating surfactant- and oil-containing feed streams via membrane distillation, Adv. Colloid Interface Sci. 273 (2019) 102022. [5] J.M. Vadillo, L. Gómez-Coma, A. Garea, A. Irabien, Hollow fiber membrane contactors in CO2 desorption: A review, Energy Fuels 35 (1) (2021) 111–136. [6] M. Brzozowski, M. O'Brien, S.V. Ley, A. Polyzos, Flow chemistry: Intelligent processing of gas–liquid transformations using a tube-in-tube reactor, Acc. Chem. Res. 48 (2) (2015) 349–362. [7] M.H. Ibrahim, M.H. El-Naas, Z.E. Zhang, B. van der Bruggen, CO2 capture using hollow fiber membranes: A review of membrane wetting, Energy Fuels 32 (2) (2018) 963–978. [8] S.D. Bazhenov, A.V. Bildyukevich, A.V. Volkov, Gas–liquid hollow fiber membrane contactors for different applications, Fibers 6 (4) (2018) 76. [9] L.L. Li, G.Y. Ma, Z. Pan, N. Zhang, Z.E. Zhang, Research progress in gas separation using hollow fiber membrane contactors, Membranes 10 (12) (2020) 380. [10] A. Mansourizadeh, I. Rezaei, W.J. Lau, M.Q. Seah, A.F. Ismail, A review on recent progress in environmental applications of membrane contactor technology, J. Environ. Chem. Eng. 10 (3) (2022) 107631. [11] P.S. Kumar, J.A. Hogendoorn, P.H.M. Feron, G.F. Versteeg, New absorption liquids for the removal of CO2 from dilute gas streams using membrane contactors, Chem. Eng. Sci. 57 (9) (2002) 1639–1651. [12] A. Mansourizadeh, A.F. Ismail, Hollow fiber gas–liquid membrane contactors for acid gas capture: A review, J. Hazard. Mater. 171 (1–3) (2009) 38–53. [13] S. Mosadegh-Sedghi, D. Rodrigue, J. Brisson, M.C. Iliuta, Wetting phenomenon in membrane contactors—Causes and prevention, J. Membr. Sci. 452 (2014) 332–353. [14] Y.L. Xu, K. Goh, R. Wang, T.H. Bae, A review on polymer-based membranes for gas–liquid membrane contacting processes: Current challenges and future direction, Sep. Purif. Technol. 229 (2019) 115791. [15] M. Rezaei, D.M. Warsinger, V.J. Lienhard, M.C. Duke, T. Matsuura, W.M. Samhaber, Wetting phenomena in membrane distillation: Mechanisms, reversal, and prevention, Water Res. 139 (2018) 329–352. [16] A. Babin, F. Bougie, D. Rodrigue, M.C. Iliuta, A closer look on the development and commercialization of membrane contactors for mass transfer and separation processes, Sep. Purif. Technol. 227 (2019) 115679. [17] Y.F. Li, L.A. Wang, X.Y. Hu, P.R. Jin, X. Song, Surface modification to produce superhydrophobic hollow fiber membrane contactor to avoid membrane wetting for biogas purification under pressurized conditions, Sep. Purif. Technol. 194 (2018) 222–230. [18] J.G. Ju, K. Fejjari, Y. Cheng, M.Y. Liu, Z.J. Li, W.M. Kang, Y. Liao, Engineering hierarchically structured superhydrophobic PTFE/POSS nanofibrous membranes for membrane distillation, Desalination 486 (2020) 114481. [19] S. Rajabzadeh, S. Yoshimoto, M. Teramoto, M. Al-Marzouqi, Y. Ohmukai, T. Maruyama, H. Matsuyama, Effect of membrane structure on gas absorption performance and long-term stability of membrane contactors, Sep. Purif. Technol. 108 (2013) 65–73. [20] S.C. Chen, S.H. Lin, R.D. Chien, Y.H. Wang, H.C. Hsiao, Chemical absorption of carbon dioxide with asymmetrically heated polytetrafluoroethylene membranes, J. Environ. Manag. 92 (4) (2011) 1083–1090. [21] V.Y. Dindore, D.W.F. Brilman, F.H. Geuzebroek, G.F. Versteeg, Membrane–solvent selection for CO2 removal using membrane gas–liquid contactors, Sep. Purif. Technol. 40 (2) (2004) 133–145. [22] J. Kerber, J.U. Repke, Mass transfer and selectivity analysis of a dense membrane contactor for upgrading biogas, J. Membr. Sci. 520 (2016) 450–464. [23] P.T. Nguyen, E. Lasseuguette, Y. Medina-Gonzalez, J.C. Remigy, D. Roizard, E. Favre, A dense membrane contactor for intensified CO2 gas/liquid absorption in post-combustion capture, J. Membr. Sci. 377 (1–2) (2011) 261–272. [24] F.E. Celik, H. Lawrence, A.T. Bell, Synthesis of precursors to ethylene glycol from formaldehyde and methyl formate catalyzed by heteropoly acids, J. Mol. Catal. A Chem. 288 (1–2) (2008) 87–96. [25] Y. Sun, H. Wang, J.H. Shen, H.C. Liu, Z.M. Liu,Highly effective synthesis of methyl glycolate with heteropolyacids as catalysts, Catal. Commun. 10 (5) (2009) 678–681. [26] J.P. Wang, J.H. Liu, H.Y. Song, J. Chen,Heteropolyacids as efficient catalysts for the synthesis of precursors to ethylene glycol by the liquid-phase carbonylation of dimethoxymethane, Chem. Lett. 44 (6) (2015) 806–808. [27] C. Vogelpohl, C. Brandenbusch, G. Sadowski, High-pressure gas solubility in multicomponent solvent systems for hydroformylation. Part I: Carbon monoxide solubility, J. Supercrit. Fluids 81 (2013) 23–32. [28] Z.H. Zhu, G.D. Kang, Y. Sun, S. Yu, M. Li, J. Xu, Y.M. Cao,An experimental study on synthesis of glycolic acid via carbonylation of formaldehyde using PTFE membrane contactor, J. Membr. Sci. 586 (2019) 259–266. [29] Z.H. Zhu, G.D. Kang, S. Yu, Y.T. Qin, Y. Sun, Y.M. Cao, Process intensification in carbonylation of formaldehyde with active and passive enhancement methods, J. Flow Chem. 10 (4) (2020) 605–613. [30] J.X. Jia, G.D. Kang, T. Zou, M. Li, M.Q. Zhou, Y.M. Cao, Sintering process investigation during polytetrafluoroethylene hollow fibre membrane fabrication by extrusion method, High Perform. Polym. 29 (9) (2017) 1069–1082. [31] S.J. Limb, K.K.S. Lau, D.J.Edell, E.F. Gleason, K.K. Gleason, Molecular design of fluorocarbon film architecture by pulsed plasma enhanced and pyrolytic chemical vapor deposition, Plasmas Polym. 4 (1) (1999) 21–32. [32] S. Tavakoli, S. Nemati, M. Kharaziha, S. Akbari-Alavijeh, Embedding CuO nanoparticles in PDMS-SiO2 coating to improve antibacterial characteristic and corrosion resistance, Colloid Interface Sci. Commun. 28 (2019) 20–28. [33] M. Li, Z.H. Zhu, M.Q. Zhou, X.M. Jie, L.N. Wang, G.D. Kang, Y.M. Cao, Removal of CO2 from biogas by membrane contactor using PTFE hollow fibers with smaller diameter, J. Membr. Sci. 627 (2021) 119232. [34] A. Zdziennicka, B. Jańczuk, W. Wójcik, Wettability of polytetrafluoroethylene by aqueous solutions of two anionic surfactant mixtures, J. Colloid Interface Sci. 268 (1) (2003) 200–207. [35] A.T. Servi, J. Kharraz, D. Klee, K. Notarangelo, B. Eyob, E. Guillen-Burrieza, A.D. Liu, H.A. Arafat, K.K. Gleason, A systematic study of the impact of hydrophobicity on the wetting of MD membranes, J. Membr. Sci. 520 (2016) 850–859. [36] X. Zhou, M.H. Zha, J.L. Cao, H. Yan, X. Feng, D. Chen, C.H. Yang, Glycolic acid production from ethylene glycol via sustainable biomass energy: Integrated conceptual process design and comparative techno-economic–society–environment analysis, ACS Sustainable Chem. Eng. 9 (32) (2021) 10948–10962. [37] R. Wang, H.Y. Zhang, P.H.M. Feron, D.T. Liang, Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors, Sep. Purif. Technol. 46 (1–2) (2005) 33–40. [38] M. Mavroudi, S.P. Kaldis, G.P. Sakellaropoulos, A study of mass transfer resistance in membrane gas–liquid contacting processes, J. Membr. Sci. 272 (1–2) (2006) 103–115. |