[1] G. Vega, A. Quintanilla, M. Belmonte, J.A. Casas, Kinetic study of phenol hydroxylation by H2O2 in 3D Fe/SiC honeycomb monolithic reactors: Enabling the sustainable production of dihydroxybenzenes, Chem. Eng. J. 428 (2022) 131128. [2] Q. Zhang, Y. Zhai, F.M. Wang, X.B. Zhang, G.J. Lv, Y.K. Liu, M.Y. Li, M.Y. Li, One-step controllable strategy for synthesizing hierarchical Fe-MFI/MCM-41 composites using CTAB as a dual-functional template, Microporous Mesoporous Mater. 329 (2022) 111515. [3] Y.Y. Huang, H. Konnerth, J.Y. Yeh, M.H.G. Prechtl, C.Y. Wen, K.C.W. Wu, De novo synthesis of Cr-embedded MOF-199 and derived porous CuO/CuCr2O4 composites for enhanced phenol hydroxylation, Green Chem. 21 (8) (2019) 1889–1894. [4] Z. Huang, J.P. Lumb, Phenol-directed C-H functionalization, ACS Catal. 9 (1) (2019) 521–555. [5] J.M. Jiang, M.H. Zhu, Y.S. Liu, Y.Q. Li, T. Gui, N. Hu, F. Zhang, X.S. Chen, H. Kita, Influences of synthesis conditions on preparation and characterization of Ti-MWW zeolite membrane by secondary hydrothermal synthesis, Microporous Mesoporous Mater. 297 (2020) 110004. [6] H.L. Li, L.B. Wang, Y.Z. Dai, Z.T. Pu, Z.H. Lao, Y.W. Chen, M.L. Wang, X.S. Zheng, J.F. Zhu, W.H. Zhang, R. Si, C. Ma, J. Zeng, Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation, Nat. Nanotechnol. 13 (5) (2018) 411–417. [7] J. He, Z.J. Wu, Q.Q. Gu, Y.S. Liu, S.Q. Chu, S.H. Chen, Y.F. Zhang, B. Yang, T.H. Chen, A.Q. Wang, B.M. Weckhuysen, T. Zhang, W.H. Luo, Zeolite-tailored active site proximity for the efficient production of pentanoic biofuels, Angew. Chem. Int. Ed. 60 (44) (2021) 23713–23721. [8] W.H. Luo, W.X. Cao, P.C.A. Bruijnincx, L. Lin, A.Q. Wang, T. Zhang, Zeolite-supported metal catalysts for selective hydrodeoxygenation of biomass-derived platform molecules, Green Chem. 21 (14) (2019) 3744–3768. [9] P. Zhou, X.G. Hou, Y.G. Chao, W.X. Yang, W.Y. Zhang, Z.J. Mu, J.P. Lai, F. Lv, K. Yang, Y.X. Liu, J. Li, J.Y. Ma, J. Luo, S.J. Guo, Synergetic interaction between neighboring platinum and ruthenium monomers boosts CO oxidation, Chem. Sci. 10 (23) (2019) 5898–5905. [10] B. Lu, Z. Wang, S.X. Ma, S.J. Mao, Z.R. Chen, Y. Wang, Spatial charge separation induced new mechanism of efficient C-C coupling by forming ion-pair intermediates, Chem Catal. 1 (7) (2021) 1449–1465. [11] Y. Wang, H. Lu, P.F. Xu, Asymmetric catalytic cascade reactions for constructing diverse scaffolds and complex molecules, Acc. Chem. Res. 48 (7) (2015) 1832–1844. [12] Y. Wang, R.G. Han, Y.L. Zhao, S. Yang, P.F. Xu, D. Dixon, Asymmetric organocatalytic relay cascades: Catalyst-controlled stereoisomer selection in the synthesis of functionalized cyclohexanes, Angew. Chem. Int. Ed. 48 (52) (2009) 9834–9838. [13] C.J. Nalbandian, Z.E. Brown, E. Alvarez, J.L. Gustafson, Lewis base/bronsted acid dual-catalytic C-H sulfenylation of aromatics, Org. Lett. 20 (11) (2018) 3211–3214. [14] H. Chen, Z.Z. Yang, H.G. Peng, K.C. Jie, P.P. Li, S.M. Ding, W. Guo, X. Suo, J.X. Liu, R. Yan, W.M. Liu, C.L. Do-Thanh, H.M. Wang, Z.D. Wang, L. Han, W.M. Yang, S. Dai, A bifunctional zeolitic porous liquid with incompatible Lewis pairs for antagonistic cascade catalysis, Chem 7 (12) (2021) 3340–3358. [15] A. Ramirez, X. Gong, M. Caglayan, S.F. Nastase, E. Abou-Hamad, L. Gevers, L. Cavallo, A. Dutta Chowdhury, J. Gascon, Selectivity descriptors for the direct hydrogenation of CO2 to hydrocarbons during zeolite-mediated bifunctional catalysis, Nat. Commun. 12 (1) (2021) 5914. [16] Y.C. Chai, W.L. Dai, G.J. Wu, N.J. Guan, L.D. Li, Confinement in a zeolite and zeolite catalysis, Acc. Chem. Res. 54 (13) (2021) 2894–2904. [17] Y.Q. Sun, Z.K. Zhao, Implanting Copper-Zinc nanoparticles into the matrix of mesoporous alumina as a highly selective bifunctional catalyst for direct synthesis of dimethyl ether from syngas, ChemCatChem 12 (5) (2020) 1276–1281. [18] S.W. Yang, C. Wu, J.H. Wang, H.D. Shen, K. Zhu, X. Zhang, Y.L. Cao, Q.Y. Zhang, H.P. Zhang, Metal single-atom and nanoparticle double-active-site relay catalysts: Design, preparation, and application to the oxidation of 5-hydroxymethylfurfural, ACS Catal. 12 (2) (2022) 971–981. [19] C.C. Wang, J. Huang, X.H. Li, S. Kramer, G.Q. Lin, X.W. Sun, Asymmetric organocatalytic[4 + 1]annulations: Enantioselective construction of multifunctionalized spirocyclopentane oxindoles bearing α, α-disubstituted α-amino-β-keto esters, Org. Lett. 20 (10) (2018) 2888–2891. [20] Y.H. Chen, D.H. Li, Y.K. Liu, Diversified synthesis of chiral chromane-containing polyheterocyclic compounds via asymmetric organocatalytic cascade reactions, ACS Omega 3 (12) (2018) 16615–16625. [21] Z.L. Li, Y.Z. Qu, J.J. Wang, H.L. Liu, M.R. Li, S. Miao, C. Li, Highly selective conversion of carbon dioxide to aromatics over tandem catalysts, Joule 3 (2) (2019) 570–583. [22] S.S. Chen, M.S. Wu, Z.Y. Han, Palladium-catalyzed cascade sp2 C–H functionalization/intramolecular asymmetric allylation: From aryl ureas and 1, 3-dienes to chiral indolines, Angew. Chem. Int. Ed. 56 (23) (2017) 6641–6645. [23] P.K. Khatri, B. Singh, S.L. Jain, B. Sain, A.K. Sinha, Cyclotriphosphazene grafted silica: A novel support for immobilizing the oxo-vanadium Schiff base moieties for hydroxylation of benzene, Chem. Commun. (Camb) 47 (5) (2011) 1610–1612. [24] K. Kamata, T. Yamaura, N. Mizuno, Chemo- and regioselective direct hydroxylation of arenes with hydrogen peroxide catalyzed by a divanadium-substituted phosphotungstate, Angew. Chem. Int. Ed Engl. 51 (29) (2012) 7275–7278. [25] P. Borah, X. Ma, K.T. Nguyen, Y.L. Zhao, A vanadyl complex grafted to periodic mesoporous organosilica: A green catalyst for selective hydroxylation of benzene to phenol, Angew. Chem. Int. Ed. 51 (31) (2012) 7756–7761. [26] Y. Zhou, Z.P. Ma, J.J. Tang, N. Yan, Y.H. Du, S.B. Xi, K. Wang, W. Zhang, H.M. Wen, J. Wang, Immediate hydroxylation of arenes to phenols via V-containing all-silica ZSM-22 zeolite triggered non-radical mechanism, Nat. Commun. 9 (1) (2018) 2931. [27] X.X. Dong, X.Y. Wang, H. Song, Y. Zhang, A.H. Yuan, Z.J. Guo, Q. Wang, F. Yang, Enabling efficient aerobic 5-hydroxymethylfurfural oxidation to 2, 5-furandicarboxylic acid in water by interfacial engineering reinforced Cu-Mn oxides hollow nanofiber, ChemSusChem (2022) e202200076. [28] S.R. Docherty, C. Copéret, Deciphering metal-oxide and metal-metal interplay via surface organometallic chemistry: A case study with CO2 hydrogenation to methanol, J. Am. Chem. Soc. 143 (18) (2021) 6767–6780. [29] F. Yang, R.Y. Wang, S.J. Zhou, X.Y. Wang, Y. Kong, S.Y. Gao, Mesopore-encaged V-Mn oxides: Progressive insertion approach triggering reconstructed active sites to enhance catalytic oxidative desulfuration, Chin. J. Chem. Eng. 45 (2022) 182–193. [30] R.Y. Wang, X.F. Liu, F. Yang, S.Y. Gao, S.J. Zhou, Y. Kong, Neighboring Cu toward Mn site in confined mesopore to trigger strong interplay for boosting catalytic epoxidation of styrene, Appl. Surf. Sci. 537 (2021) 148100. [31] F. Yang, S.Y. Gao, C.R. Xiong, S.F. Long, X.M. Li, T. Xi, Y. Kong, Direct templating assembly route for the preparation of highly-dispersed vanadia species encapsulated in mesoporous MCM-41 channel, RSC Adv. 5 (88) (2015) 72099–72106. [32] J.C. Bedoya, R. Valdez, L. Cota, M.A. Alvarez-Amparán, A. Olivas, Performance of Al-MCM-41 nanospheres as catalysts for dimethyl ether production, Catal. Today 388-389 (2022) 55–62. [33] J.W. Cleveland, J.I. Choi, R.S. Sekiya, J. Cho, H.J. Moon, S.S. Jang, C.W. Jones, Cooperativity in the aldol condensation using bifunctional mesoporous silica–poly(styrene) MCM-41 organic/inorganic hybrid catalysts, ACS Appl. Mater. Interfaces 14 (9) (2022) 11235–11247. [34] X.Y. Lu, H.Q. Guo, J.J. Chen, D.Y. Wang, A.F. Lee, X.L. Gu, Selective catalytic transfer hydrogenation of lignin to alkyl guaiacols over NiMo/Al-MCM-41, ChemSusChem 15 (7) (2022) e202200099. [35] S.Y. Gao, F. Yang, X.F. Liu, X. Hu, C.J. Song, S.J. Zhou, Y. Kong, Exposed ternary metal active sites on mesoporous channels: A promising catalyst for low-temperature selective catalytic oxidization of phenol with H2O2, Mol. Catal. 478 (2019) 110568. [36] F. Yang, B.B. Wang, S.J. Zhou, S.F. Long, X.F. Liu, Y. Kong, Micropore-enriched CuO-based silica catalyst directly prepared by anionic template-induced method and its boosting catalytic activity in olefins epoxidation, Microporous Mesoporous Mater. 246 (2017) 215–224. [37] F. Yang, S.P. Ding, H.B. Song, N. Yan, Single-atom Pd dispersed on nanoscale anatase TiO2 for the selective hydrogenation of phenylacetylene, Sci. China Mater. 63 (6) (2020) 982–992. [38] C. Ciotonea, A. Chirieac, B. Dragoi, J. Dhainaut, M. Marinova, S. Pronier, S. Arii-Clacens, J.P. Dacquin, E. Dumitriu, A. Ungureanu, S. Royer, Playing on 3D spatial distribution of Cu-Co (oxide) nanoparticles in inorganic mesoporous sieves: Impact on catalytic performance toward the cinnamaldehyde hydrogenation, Appl. Catal. A Gen. 623 (2021) 118303. [39] A. Jankowska, A. Chłopek, A. Kowalczyk, M. Rutkowska, W. Mozgawa, M. Michalik, S.Q. Liu, L. Chmielarz, Enhanced catalytic performance in low-temperature NH3-SCR process of spherical MCM-41 modified with Cu by template ion-exchange and ammonia treatment, Microporous Mesoporous Mater. 315 (2021) 110920. [40] K. Pakzad, H. Alinezhad, M. Nasrollahzadeh, Green synthesis of Ni@Fe3O4 and CuO nanoparticles using Euphorbia Maculata extract as photocatalysts for the degradation of organic pollutants under UV-irradiation, Ceram. Int. 45 (14) (2019) 17173–17182. [41] S. Pithakratanayothin, R. Tongsri, T. Chaisuwan, S. Wongkasemjit, P. Khemthong, S. Limpijumnong, P. Pharanchai, K. Malaicharoen, Discovery of mono(u-oxo)dicopper and bis(u-oxo)dicopper in ordered Cu incorporated in SBA-15 via Sol-gel process from silatrane at room temperature: An in situ XAS investigation, Microporous Mesoporous Mater. 301 (2020) 110225. [42] Y.L. Wu, Z.F. Han, X. Yan, W.Z. Lang, Y.J. Guo, Effective synthesis of vanadium-doped mesoporous silica nanospheres by Sol-gel method for propane dehydrogenation reaction, Microporous Mesoporous Mater. 330 (2022) 111616. [43] L. Lyu, L.L. Zhang, C. Hu, Enhanced Fenton-like degradation of pharmaceuticals over framework copper species in copper-doped mesoporous silica microspheres, Chem. Eng. J. 274 (2015) 298–306. [44] E.X. Yuan, P. Ni, W.L. Zhuang, R.Q. Jian, P.M. Jian, Synergic catalysis by a CuO-like phase and Cu0 for anaerobic dehydrogenation of 2, 3-butanediol, J. Catal. 382 (2020) 256–268. [45] A.S. Al-Awadi, A.M. El-Toni, M. Alhoshan, A. Khan, M.A. Shar, A.E. Abasaeed, S.M. Al-Zahrani, Synergetic impact of secondary metal oxides of Cr-M/MCM41 catalyst nanoparticles for ethane oxidative dehydrogenation using carbon dioxide, Crystals 10 (1) (2019) 7. [46] H.X. Cao, J. Zhang, C.L. Guo, J.G. Chen, X.K. Ren, Modifying surface properties of KIT-6 zeolite with Ni and V for enhancing catalytic CO methanation, Appl. Surf. Sci. 426 (2017) 40–49. [47] B. Nanda, A.C. Pradhan, K.M. Parida, Fabrication of mesoporous CuO/ZrO2-MCM-41 nanocomposites for photocatalytic reduction of Cr(VI), Chem. Eng. J. 316 (2017) 1122–1135. [48] F. Adam, R. Thankappan, Oxidation of benzene over bimetallic Cu-Ce incorporated rice husk silica catalysts, Chem. Eng. J. 160 (1) (2010) 249–258. [49] V.M. Vaschetti, G.A. Eimer, A.L. Cánepa, S.G. Casuscelli, Catalytic performance of V-MCM-41 nanocomposites in liquid phase limonene oxidation: Vanadium leaching mitigation, Microporous Mesoporous Mater. 311 (2021) 110678. [50] O. Daoura, G. Fornasieri, M. Boutros, N. El Hassan, P. Beaunier, C. Thomas, M. Selmane, A. Miche, C. Sassoye, O. Ersen, W. Baaziz, P. Massiani, A. Bleuzen, F. Launay, One-pot prepared mesoporous silica SBA-15-like monoliths with embedded Ni particles as selective and stable catalysts for methane dry reforming, Appl. Catal. B Environ. 280 (2021) 119417. [51] A. Held, J. Kowalska-Kuś, E. Janiszewska, A. Jankowska, K. Nowińska, Epoxidation of propane with oxygen and/or nitrous oxide over silica-supported vanadium oxide, J. Catal. 404 (2021) 231–243. [52] P.P. Wu, Z.K. He, Y.H. Liu, L. Song, C.Z. Wang, E. Muhumuza, P. Bai, L.M. Zhao, S. Mintova, Z.F. Yan, Compatibility between activity and selectivity in catalytic oxidation of benzyl alcohol with Au–Pd nanoparticles through redox switching of SnOx, ACS Appl. Mater. Interfaces 13 (42) (2021) 49780–49792. [53] M. Sharma, G. Saikia, K. Ahmed, S.R. Gogoi, V.G. Puranik, N.S. Islam, Vanadium-based polyoxometalate complex as a new and efficient catalyst for phenol hydroxylation under mild conditions, New J. Chem. 42 (7) (2018) 5142–5152. [54] W. Wang, G. Ding, T. Jiang, P. Zhang, T. Wu, B. Han, Facile one-pot synthesis of VxOy@C catalysts using sucrose for the direct hydroxylation of benzene to phenol, Green Chem. 15 (2013) 1150-1154. [55] R. Mistri, M. Rahaman, J. Llorca, K.R. Priolkar, S. Colussi, B.C. Ray, A. Gayen, Liquid phase selective oxidation of benzene over nanostructured CuxCe1-xO2-δ (0.03 ≤ x ≤ 0.15), J. Mol. Catal. A Chem. 390 (2014) 187–197. |