[1] J.Y. Qian, X.J. Li, Z. Wu, Z.J. Jin, B. Sunden, A comprehensive review on liquid–liquid two-phase flow in microchannel: Flow pattern and mass transfer, Microfluid. Nanofluid. 23 (10) (2019) 1–30. [2] D. Tsaoulidis, V. Dore, P. Angeli, N.V. Plechkova, K.R. Seddon, Dioxouranium(VI) extraction in microchannels using ionic liquids, Chem. Eng. J. 227 (2013) 151–157. [3] N. Taarji, S. Vodo, M. Bouhoute, N. Khalid, A. Hafidi, I. Kobayashi, M.A. Neves, H. Isoda, M. Nakajima, Preparation of monodisperse O/W emulsions using a crude surface-active extract from argan by-products in microchannel emulsification, Colloids Surf. A Physicochem. Eng. Aspects 585 (2020) 124050. [4] C.X. Fan, R. Ma, Y.B. Wang, J.H. Luo, Demulsification of oil-in-water emulsions in a novel rotating microchannel, Ind. Eng. Chem. Res. 59 (17) (2020) 8335–8345. [5] D. Cheng, F.E. Chen, Experimental and numerical studies of the phase-transfer-catalyzed Wittig reaction in liquid–liquid slug-flow microchannels, Ind. Eng. Chem. Res. 59 (10) (2020) 4397–4410. [6] N.D.M. Raimondi, L. Prat, Numerical study of the coupling between reaction and mass transfer for liquid–liquid slug flow in square microchannels, AIChE J. 57 (7) (2011) 1719–1732. [7] Y.H. Li, D.G. Yamane, S.N. Li, S. Biswas, R.K. Reddy, J.S. Goettert, K. Nandakumar, C.S.S.R. Kumar, Geometric optimization of liquid–liquid slug flow in a flow-focusing millifluidic device for synthesis of nanomaterials, Chem. Eng. J. 217 (2013) 447–459. [8] J. Gómez-Pastora, C. González-Fernández, M. Fallanza, E. Bringas, I. Ortiz, Flow patterns and mass transfer performance of miscible liquid–liquid flows in various microchannels: Numerical and experimental studies, Chem. Eng. J. 344 (2018) 487–497. [9] P. Plouffe, D.M. Roberge, J. Sieber, M. Bittel, A. Macchi, Liquid–liquid mass transfer in a serpentine micro-reactor using various solvents, Chem. Eng. J. 285 (2016) 605–615. [10] N.D.M. Raimondi, L. Prat, C. Gourdon, J. Tasselli, Experiments of mass transfer with liquid–liquid slug flow in square microchannels, Chem. Eng. Sci. 105 (2014) 169–178. [11] F.T. Kanizawa, G. Ribatski, Two-phase flow patterns and pressure drop inside horizontal tubes containing twisted-tape inserts, Int. J. Multiph. Flow 47 (2012) 50–65. [12] A. Salim, M. Fourar, J. Pironon, J. Sausse, Oil–water two-phase flow in microchannels: Flow patterns and pressure drop measurements, Can. J. Chem. Eng. 86 (6) (2008) 978–988. [13] O.S. Osundare, G. Falcone, L.Y. Lao, A. Elliott, Liquid–liquid flow pattern prediction using relevant dimensionless parameter groups, Energies 13 (17) (2020) 4355. [14] A. Matsuoka, K. Mae, Design strategy of a microchannel device for liquid–liquid extraction based on the relationship between mass transfer rate and two-phase flow pattern, Chem. Eng. Process. Process. Intensif. 160 (2021) 108297 [15] R.K. Verma, S. Ghosh, Effect of phase properties on liquid–liquid two-phase flow patterns and pressure drop in serpentine mini geometry, Chem. Eng. J. 397 (2020) 125443. [16] P.S. Sarkar, K.K. Singh, K.T. Shenoy, A. Sinha, H. Rao, S.K. Ghosh, Liquid–liquid two-phase flow patterns in a serpentine microchannel, Ind. Eng. Chem. Res. 51 (13) (2012) 5056–5066. [17] M. Darekar, K.K. Singh, S. Mukhopadhyay, K.T. Shenoy, Liquid–liquid two-phase flow patterns in Y-junction microchannels, Ind. Eng. Chem. Res. 56 (42) (2017) 12215–12226. [18] A.A. Yagodnitsyna, A.V. Kovalev, A.V. Bilsky, Flow patterns of immiscible liquid–liquid flow in a rectangular microchannel with T-junction, Chem. Eng. J. 303 (2016) 547–554. [19] A.V. Kovalev, A.A. Yagodnitsyna, A.V. Bilsky, Flow hydrodynamics of immiscible liquids with low viscosity ratio in a rectangular microchannel with T-junction, Chem. Eng. J. 352 (2018) 120–132. [20] Y.C. Zhao, Y.H. Su, G.W. Chen, Q. Yuan, Effect of surface properties on the flow characteristics and mass transfer performance in microchannels, Chem. Eng. Sci. 65 (5) (2010) 1563–1570. [21] P. Plouffe, D.M. Roberge, A. Macchi, Liquid–liquid flow regimes and mass transfer in various micro-reactors, Chem. Eng. J. 300 (2016) 9–19. [22] M. Kashid, L. Kiwi-Minsker, Quantitative prediction of flow patterns in liquid–liquid flow in micro-capillaries, Chem. Eng. Process. Process. Intensif. 50 (10) (2011) 972–978. [23] A.L. Dessimoz, L. Cavin, A. Renken, L. Kiwi-Minsker, Liquid–liquid two-phase flow patterns and mass transfer characteristics in rectangular glass microreactors, Chem. Eng. Sci. 63 (16) (2008) 4035–4044. [24] Y.P. Chen, X.D. Liu, M.H. Shi, Hydrodynamics of double emulsion droplet in shear flow, Appl. Phys. Lett. 102 (5) (2013) 051609. [25] X.D. Liu, C.Y. Wang, Y.J. Zhao, Y.P. Chen, Passing-over motion during binary collision between double emulsion droplets under shear, Chem. Eng. Sci. 183 (2018) 215–222. [26] U. Novak, A. Pohar, I. Plazl, P. Žnidaršič-Plazl, Ionic liquid-based aqueous two-phase extraction within a microchannel system, Sep. Purif. Technol. 97 (2012) 172–178. [27] M. Darekar, N. Sen, K.K. Singh, S. Mukhopadhyay, K.T. Shenoy, S.K. Ghosh, Liquid–liquid extraction in microchannels with zinc-D2EHPA system, Hydrometallurgy 144-145 (2014) 54–62. [28] K.K. Singh, A.U. Renjith, K.T. Shenoy, Liquid–liquid extraction in microchannels and conventional stage-wise extractors: A comparative study, Chem. Eng. Process. Process. Intensif. 98 (2015) 95–105. [29] J. Jovanović, E.V. Rebrov, T.A.X. Nijhuis, M.T. Kreutzer, V. Hessel, J.C. Schouten, Liquid–liquid flow in a capillary microreactor: Hydrodynamic flow patterns and extraction performance, Ind. Eng. Chem. Res. 51 (2) (2012) 1015–1026. [30] Y. He, S.H. Guo, M.I. Khan, K.H. Chen, S.W. Li, L.B. Zhang, S.H. Yin, Liquid–liquid extraction of yttrium(III) using 2-ethylhexyl phosphonic acid mono-2-ethylhexyl (EHEHPA) in a microreactor: A comparative study, ACS Sustain. Chem. Eng. 7 (1) (2019) 1616–1621. [31] T. Shimanouchi, Y. Kataoka, T. Tanifuji, Y. Kimura, S. Fujioka, K. Terasaka, Chemical conversion and liquid–liquid extraction of 5-hydroxymethylfurfural from fructose by slug flow microreactor, AIChE J. 62 (6) (2016) 2135–2143. [32] A. Gupta, R. Kumar, Flow regime transition at high capillary numbers in a microfluidic T-junction: Viscosity contrast and geometry effect, Phys. Fluids 22 (12) (2010) 122001. [33] X.Y. Wang, K. Wang, A. Riaud, X. Wang, G.S. Luo, Experimental study of liquid/liquid second-dispersion process in constrictive microchannels, Chem. Eng. J. 254 (2014) 443–451. [34] Z.H. Qiao, Z. Wang, C.X. Zhang, S.J. Yuan, Y.Q. Zhu, J.X. Wang, S.C. Wang, PVAm-PIP/PS composite membrane with high performance for CO2/N2 separation, AIChE J. 59 (1) (2013) 215–228. [35] S.K.R. Cherlo, S. Kariveti, S. Pushpavanam, Experimental and numerical investigations of two-phase (liquid–liquid) flow behavior in rectangular microchannels, Ind. Eng. Chem. Res. 49 (2) (2010) 893–899. |