[1] D. Chukov, S. Nematulloev, M. Zadorozhnyy, V. Tcherdyntsev, A. Stepashkin, D. Zherebtsov, Structure, mechanical and thermal properties of polyphenylene sulfide and polysulfone impregnated carbon fiber composites, Poly. (Basel). 11 (2019) 684. [2] H.W. Hill Jr, D.G. Brady, Properties, environmental stability, and molding characteristics of polyphenylene sulfide, Polym. Eng. Sci. 16 (12) (1976) 831–835.http://dx.doi.org/10.1002/pen.760161211 [3] Y. Yu, S.W. Xiong, H. Huang, L. Zhao, K. Nie, S.H. Chen, J. Xu, X.Z. Yin, H. Wang, L.X. Wang, Fabrication and application of poly (phenylene sulfide) ultrafine fiber, React. Funct. Polym. 150 (2020) 104539.http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104539 [4] S. Houis, M. Schmid, J. Lübben, New functional bicomponent fibers with core/sheath-configuration using poly(phenylene sulfide) and poly(ethylene terephthalate), J. Appl. Polym. Sci. 106 (3) (2007) 1757–1767.https://doi.org/10.1002/app.26846 [5] K. Stoeffler, S. Andjelic, N. Legros, J. Roberge, S.B. Schougaard, Polyphenylene sulfide (PPS) composites reinforced with recycled carbon fiber, Compos. Sci. Technol. 84 (2013) 65–71.http://dx.doi.org/10.1016/j.compscitech.2013.05.005 [6] P.Y. Zuo, J. Fitoussi, M. Shirinbayan, F. Bakir, A. Tcharkhtchi, Thermal aging effects on overall mechanical behavior of short glass fiber-reinforced polyphenylene sulfide composites, Polym. Eng. Sci. 59 (4) (2019) 765–772.http://dx.doi.org/10.1002/pen.25003 [7] M.L. Zhang, Y. Gao, Y.X. Zhang, M.G. Zhang, Y. Gao, B.W. Cheng, Z.H. Li, Preparation and properties of polyphenylene sulfide/oxidized-polyphenylene sulfide composite membranes, React. Funct. Polym. 160 (2021) 104842.http://dx.doi.org/10.1016/j.reactfunctpolym.2021.104842 [8] P. Jing, S. Zhu, M. Yu, X. Yuan, Z. Jiang, Preparation of carbon fiber fabric reinforced polyphenylene sulfide(CFF/PPS) thermoplastic composites based on surface modification of carbon fibers, J. Mete. Eng. 44 (2016) 21-27. [9] Y.K. Xu, S. Zhu, Z. Zhang, M.H. Yu, X.K. Yuan, A new way of strengthening and toughening for carbon fiber reinforced polyphenylene sulfide (CF/PPS) composites via matrix modification, J. Wuhan Univ. Technol. Mater. Sci. Ed. 32 (6) (2017) 1318–1322.http://dx.doi.org/10.1007/s11595-017-1747-y [10] J. Xing, Q.Q. Ni, B.Y. Deng, Q.S. Liu, Morphology and properties of polyphenylene sulfide (PPS)/polyvinylidene fluoride (PVDF) polymer alloys by melt blending, Compos. Sci. Technol. 134 (2016) 184–190.http://dx.doi.org/10.1016/j.compscitech.2016.08.020 [11] X.Q. Sheng, R.P. Zhang, M. Niu, H. Yang, J.M. Dai, L.B. Gao, Preparation of SiO2/PPS fiber and study of its heat-resistant properties, Adv. Mater. Res. 287-290 (2011) 2590–2597.https://doi.org/10.4028/www.scientific.net/amr.287-290.2590 [12] U. Kuruppu, A. Rahman, A. Sathasivan, Enhanced denitrification by design modifications to the standard permeable pavement structure, J. Clean. Prod. 237 (2019) 117721.http://dx.doi.org/10.1016/j.jclepro.2019.117721 [13] Y.Q. Yang, H.J. Duan, S.Y. Zhang, P.F. Niu, G. Zhang, S.R. Long, X.J. Wang, J. Yang, Morphology control of nanofillers in poly (phenylene sulfide): a novel method to realize the exfoliation of nanoclay by SiO2 via melt shear flow, Compos. Sci. Technol. 75 (2013) 28–34.http://dx.doi.org/10.1016/j.compscitech.2012.11.006 [14] L. Rebenfeld, G.P. Desio, V.E. Reinsch, The influence of reinforcing fibers on the morphology and crystallization of thermoplastic polymer composites, MRS. Proc. 255 (1991) 129.https://doi.org/10.1557/proc-255-129 [15] K.S. Elango, R. Gopi, R. Saravanakumar, V. Rajeshkumar, D. Vivek, S.V. Raman, Properties of pervious concrete - A state of the art review, Mater. Today Proc. 45 (2021) 2422–2425.http://dx.doi.org/10.1016/j.matpr.2020.10.839 [16] K. Friedrich, L. Chang, F. Haupert, Current and Future Applications of Polymer Composites in the Field of Tribology. In: Nicolais, L., Meo, M., Milella, E. (eds), Composite. Materials, Springer, London (2011) 129-167.http://dx.doi.org/10.1007/978-0-85729-166-0_6 [17] K. Sun, J.H. Zhang, F. Lin, J.S. Ren, Y.X. Zhao, W.G. Wu, Y. Liu, Evaluating the influences of integrated culture on pelagic ecosystem by a numerical approach: a case study of Sungo Bay, China, Ecol. Model. 415 (2020) 108860.http://dx.doi.org/10.1016/j.ecolmodel.2019.108860 [18] K. Park, K. Sadeghi, S. Thanakkasaranee, Y.I. Park, J. Park, K.H. Nam, H. Han, J. Seo, Effects of calcination temperature on morphological and crystallographic properties of oyster shell as biocidal agent, Int. J. Appl. Ceram. Technol. 18 (2) (2021) 302–311.http://dx.doi.org/10.1111/ijac.13647 [19] X.W. Dong, G.L. Jiang, L.D. Li, N. Wang, Research developments in the general utilization of oyster, Ma. Sci. 69 (2004) 331-338 (in Chinese) [20] X.P. Li, J.R. Li, Y.B. Wang, L.L. Fu, J.L. Zhu, Q.Y. Duan, Kinetic study of the bioaccumulation of heavy metals (Cu, Pb, and Cd) in Chinese domestic oyster Ostrea plicatula, J. Environ. Sci. Heal. A 45 (7) (2010) 836–845.http://dx.doi.org/10.1080/10934521003709032 [21] T. Kim, D. Kim, J. Jeon, Y. Son, Improvement of desalinization performance in reclaimed land through recycling of bottom ash and oyster shells, Paddy Water Environ. 19 (3) (2021) 529–538.http://dx.doi.org/10.1007/s10333-021-00852-9 [22] C.Y. Wang, D. Alidoust, A. Isoda, M.S. Li, Suppressive effects of thermal-treated oyster shells on cadmium and copper translocation in maize plants, Environ. Sci. Pollut. Res. Int. 24 (23) (2017) 19347–19356. [23] C.H. Tsou, C.S. Wu, W.S. Hung, M.R. De Guzman, C. Gao, R.Y. Wang, J. Chen, N. Wan, Y.J. Peng, and M.C. Suen, Rendering polypropylene biocomposites antibacterial through modification with oyster shell powder, Polymer. 160 (2019) 265-271. https://pubmed.ncbi.nlm.nih.gov/28669096/ [24] H.E. Swanson, E. Tatge, R.K. Fuyat, Standard X-ray diffraction powder patterns, Phys. Today. 7 (8) (1954) 22. [25] M.S. Senthil Kumar, N. Mohana Sundara Raju, P.S. Sampath, M. Chithirai Pon Selvan, Influence of nanoclay on mechanical and thermal properties of glass fiber reinforced polymer nanocomposites, Polym. Compos. 39 (6) (2018) 1861–1868.http://dx.doi.org/10.1002/pc.24139 [26] T. Sınmazçelik, İ. Taşkıran, Erosive wear behaviour of polyphenylenesulphide (PPS) composites, Mater. Des. 28 (9) (2007) 2471–2477.http://dx.doi.org/10.1016/j.matdes.2006.08.007 [27] F. Delgado-Vargas, F. Félix-Favela, J. Pío-León, G. López-Angulo, J. López-Valenzuela, S. Díaz-Camacho, M.J. Uribe-Beltrán, Antibacterial activity and qualitative phytochemical analysis of Vitex mollis fruit, Int. J. Green Pharm. 4 (4) (2010) 288.https://doi.org/10.4103/0973-8258.74140 [28] M. Popova, S. Silici, O. Kaftanoglu, V. Bankova, Antibacterial activity of Turkish propolis and its qualitative and quantitative chemical composition, Phytomedicine. 12 (3) (2005) 221–228.https://pubmed.ncbi.nlm.nih.gov/15830845/ [29] T.A. Dankovich, D.G. Gray, Contact angle measurements on smooth nanocrystalline cellulose (I) thin films, J. adh. Sci. Tech. 25 (6-7) (2011) 699-708. [30] S. Rbihi, A. Aboulouard, L. Laallam, A. Jouaiti, Contact Angle Measurements of Cellulose based Thin Film composites: wettability, surface free energy and surface hardness, Surf. Interfaces. 21 (2020) 100708.http://dx.doi.org/10.1016/j.surfin.2020.100708 [31] M.S. Kim, D.J. Kim, I.R. Jeon, K.H. Seo, Polymerization characteristics and thermal degradation study of poly(phenylene sulfide ketone), J. Appl. Polym. Sci. 76 (8) (2000) 1329–1337.http://dx.doi.org/10.1002/(SICI)1097-4628(20000523)76:8%3C1329::AID-APP14%3E3.0.CO;2-S [32] E. Tsuchida, H. Nishide, K. Yamamoto, S. Yoshida, Electrooxidative polymerization of thiophenol to yield poly(p-phenylene sulfide), Macromolecules. 20 (9) (1987) 2315–2316.http://dx.doi.org/10.1021/ma00175a046 [33] F.F. Ge, N. Wan, C.H. Tsou, J.C. Chen, C.S. Wu, M.R. Guzman, C.Y. Zeng, L. Zhou, Y.T. Wang, X. Luo, Y.Q. Yu, Thermal properties and hydrophilicity of antibacterial poly(phenylene sulfide) nanocomposites reinforced with zinc oxide-doped multiwall carbon nanotubes, J. Polym. Res. 29 (3) (2022) 1–19.http://dx.doi.org/10.1007/s10965-022-02931-9 [34] W. Ren, Y. Yang, J. Yang, H. Duan, G. Zhao, Y. Liu, Multifunctional and corrosion resistant poly(phenylene sulfide)/ag composites for electromagnetic interference shielding, Chem. Eng. J. 415 (2021) 129052. [35] Y.H. Wen, C.H. Tsou, M.R. Guzman, D. Huang, Y.Q. Yu, C. Gao, X.M. Zhang, J. Du, Y.T. Zheng, H. Zhu, Z.H. Wang, Antibacterial nanocomposite films of poly(vinyl alcohol) modified with zinc oxide-doped multiwalled carbon nanotubes as food packaging, Polym. Bull. 79 (6) (2022) 3847–3866.http://dx.doi.org/10.1007/s00289-021-03666-1 [36] Y.L. Yao, M.R. de Guzman, H. Duan, C. Gao, X. Lin, Y.H. Wen, J. Du, L. Lin, J.C. Chen, C.S. Wu, M.C. Suen, Y.L. Sun, W.S. Hung, C.H. Tsou, Infusing high-density polyethylene with graphene-zinc oxide to produce antibacterial nanocomposites with improved properties, Chin. J. Polym. Sci. 38 (8) (2020) 898–907.http://dx.doi.org/10.1007/s10118-020-2392-z [37] Z.L. Ma, C.H. Tsou, Y.L. Yao, M.R. de Guzman, C.S. Wu, C. Gao, T. Yang, Z.J. Chen, R. Zeng, Y. Li, T.T. Yang, P. Wang, L. Lin, Thermal properties and barrier performance of antibacterial high-density polyethylene reinforced with carboxyl graphene-grafted modified high-density polyethylene, Ind. Eng. Chem. Res. 60 (35) (2021) 12911–12922.https://doi.org/10.1021/acs.iecr.1c02143 [38] C. H. Tsou, Z. L. Ma, M. R. De. Guzman, L. Zhao, J. Du, W. Emori, J. Wu, High-performance antibacterial nanocomposite films with a 3D network structure prepared from carboxylated graphene and modified polyvinyl alcohol, Prog. in. Org.Co.166 (2022) 106805. [39] K. Luo, D.H. Lee, H.J. Adra, Y.R. Kim, Synthesis of monodisperse starch microparticles through molecular rearrangement of short-chain glucans from natural waxy maize starch, Carbohydr. Polym. 218 (2019) 261–268.https://pubmed.ncbi.nlm.nih.gov/31221329/ [40] X.X, Song, J. A. Prince, S.D. Delai, Relating Water/Solute Permeability Coefficients to the Performance of Thin-Film Nanofiber Composite Forward Osmosis Membrane, J. Membra. Sci. Technol. 6 (2016) 160. [41] K. Park, K. Sadeghi, S. Thanakkasaranee, P. Ye-In, J.Park, K. Nam, J. Seo, Effects of calcination temperature on morphological and crystallographic properties of oyster shell as biocidal agent, In. J. App. Cera. Tech.18 (2020) 302-311. [42] D.Y. Wu, S. S. Wang, C. S. Wu, Textile Fabrics Containing Recycled Poly(ethylene terephthalate), Oyster Shells, and Silica Aerogels with Superior Heat Insulation, Water Resistance, and Antibacterial Properties, ACS. App. Poly. Mater. 3 (2021) 3175–3184. [43] D.D. Lian, J.Y. Ren, W.X. Han, C. Ge, J.J. Lu, Kinetics and evolved gas analysis of the thermo-oxidative decomposition for neat PPS fiber and nano Ti-SiO2 modified PPS fiber, J. Mol. Struct. 1196 (2019) 734–746.http://dx.doi.org/10.1016/j.molstruc.2019.07.023 [44] X. Lu, P. Tervola, M. Viljanen, Transient heat conduction in the composite slab-analytical method, In. J. H. Mass. Trans. 49 (2006) 1107-1114. [45] X. K. Liu, L. Zhang, Q. L. Meng, L. I. Cheng-Shu, Heat Transfer Coefficient of the Oyster-shell Wall by In-situ Measurement, Wall. Design. 40 (2012) 31-33. [46] R. Zhang, B. l. Gao, l. l. Guo, J. L.Wu, Y. T. Peng,Q. Chen, Synthesis of Modified Carboxymethyl Cellulose/Oyster Shell Powder Composite and Absorption of Heavy Metal Ions, J. agri. res. enviro. 38 (2021) 787-796. [47] M.L. Zhang, X.T. Wang, C.Y. Li, Y.L. Bai, B.W. Cheng, Z.H. Li, Effects of hydrogen bonding between MWCNT and PPS on the properties of PPS/MWCNT composites, RSC Adv. 6 (95) (2016) 92378–92386.https://doi.org/10.1039/c6ra19119c [48] L.L. Wang, X.H. Zhao, F.J. Yang, W.W. Wu, M.F. Wu, Y.Y. Li, X.X. Zhang, Loading paclitaxel into porous starch in the form of nanoparticles to improve its dissolution and bioavailability, Int. J. Biol. Macromol. 138 (2019) 207–214.http://dx.doi.org/10.1016/j.ijbiomac.2019.07.083 [49] X. Lu, P. Tervola, Transient heat conduction in the composite slab-analytical method, J. Phy. A: Mathe. Gen. 38(2005) 81–96. [50] X.M. Huang, J.M. Hu, Y.H. Li, F.Y. Xin, R.R. Qiao, T.P. Davis, Engineering organic/inorganic nanohybrids through RAFT polymerization for biomedical applications, Biomacromolecules 20 (12) (2019) 4243–4257.http://dx.doi.org/10.1021/acs.biomac.9b01158 [51] S. Chen, M.R. De Guzman, C.H. Tsou, M. Li, M.C. Suen, C. Gao, and C.Y. Tsou, Hydrophilic and absorption properties of reversible nanocomposite polyvinyl alcohol hydrogels reinforced with graphene-doped zinc oxide nanoplates for enhanced antibacterial activity, Polym. J. (2022) 1-17. [52] Z.L. Ma, C.H. Tsou, X. Cui, J. Wu, L. Lin, H. Wen, M.R. De Guzman, C.Y. Wang, H. Liu, Q. Xiong, and B. Liao, Barrier properties of nanocomposites from high-density polyethylene reinforced with natural attapulgite, Curr. Res. Green Sustain. Chem. 5 (2022) 100314. [53] L. Yuan, C.L. Qu, M.R. De Guzman, X. Huang, C. Gao, Y.L Sun, Tao Yang, C Zeng, X Luo, and C.Y. Tsou, 2022. Morphology and thermal properties of low–density polyethylene/graphite composite films as potential pH sensors prepared via heat treatment and natural drying, J. Polym. Res. 29 (2022) https://doi.org/10.1007/s10965-022-03287-w [54] J.H. Yang, T. Xu, A. Lu, Q. Zhang, H. Tan, Q. Fu, Preparation and properties of poly (p-phenylene sulfide)/multiwall carbon nanotube composites obtained by melt compounding, Compos. Sci. Technol. 69 (2) (2009) 147–153.http://dx.doi.org/10.1016/j.compscitech.2008.08.030 [55] C.H. Tsou, Z.J. Chen, S. Yuan, Z.L. Ma, C.S. Wu, T. Yang, C.F. Jia, M. Reyes de Guzman, The preparation and performance of poly(butylene adipate) terephthalate/corn stalk composites, Curr. Res. Green Sustain. Chem. 5 (2022) 100329. [56] C.H. Tsou, S. Chen, X. Li, J.C. Chen, M.R. De Guzman, Y.L. Sun, J. Du, Y. Zhang, Highly resilient antibacterial composite polyvinyl alcohol hydrogels reinforced with CNT-NZnO by forming a network of hydrogen and coordination bonding, J. Polym. Res. 29, 412 (2022) https://doi.org/10.1007/s10965-022-03248-3 [57] C.H. Tsou, B.J. Kao, M.C. Suen, M.C. Yang, T.Y. Wu, C.Y. Tsou, J.C. Chen, W.H. Yao, C.K. Chu, X.M. Tuan, J.Z. Hwang, Crystallisation behaviour and biocompatibility of poly (butylene succinate)/poly (lactic acid) composites, Materials Research Innovations 18 (S2) (2014) 372, doi:10.1179/1432891714Z.000000000435, In this issue. [58] CH. Tsou, Z.L. Ma, T. Yang, M.R. De Guzman, S. Chen, C.S. Wu, X.F. Hu, X. Huang, Y.L. Sun, C. Gao, WB Zhao, C.Y. Zeng, Reinforced distiller’s grains as bio-fillers in environment-friendly poly(ethylene terephthalate) composites, Polym. Bull. (2022), doi:10.1007/s00289-022-04318-8, In press. [59] C.H. Tsou, H.T. Lee, W.S . Hung, M. De Guzman, S.T. Chen, M.C. Suen, Effects of different metals on the synthesis and properties of waterborne polyurethane composites containing pyridyl units, Polym. Bull. 74 (4) (2017) 1121–1143, doi:10.1007/s00289-016-1767-3. [60] J. Guo, C.H. Tsou, M.R. De Guzman, et al., Preparation and characterization of bio-based green renewable composites from poly (lactic acid) reinforced with corn stover, J. Polym. Res. 28 (2021) 199, doi:10.1007/s10965-021-02559-1, In this issue. [61] C.H. Tsou, H.T. Lee, M. De Guzman, et al., Synthesis of biodegradable polycaprolactone/polyurethane by curing with H2O, Polym. Bull. 72 (2015) 1545–1561, doi:10.1007/s00289-015-1356-x, In this issue. [62] C.H. Tsou, R. Zeng, C.-Y. Tsou, et al., Mechanical, Hydrophobic, and Barrier Properties of Nanocomposites of Modified Polypropylene Reinforced with Low-Content Attapulgite, Polymers 14 (17) (2022) 3696, doi:10.3390/polym14173696, In this issue. |