[1] A.S. Sharma, V.S. Sharma, H. Kaur, R.S. Varma, Supported heterogeneous nanocatalysts in sustainable, selective and eco-friendly epoxidation of olefins, Green Chem. 22 (18) (2020) 5902-5936. [2] M. Mirzaee, B. Bahramian, J. Gholizadeh, A. Feizi, R. Gholami, Acetylacetonate complexes of vanadium and molybdenum supported on functionalized boehmite nano-particles for the catalytic epoxidation of alkenes, Chem. Eng. J. 308 (2017) 160-168. [3] Y. You, C.Y. Luo, W.X. Zhu, Y.D. Zhang, Magnetic polymer microspheres based on phosphotungstic acid quaternary ammonium salt as an efficient heterogeneous catalyst for epoxidation of cyclohexene, J. Iran. Chem. Soc. 15 (7) (2018) 1535-1543. [4] J. Liu, G.Q. Yang, Y. Liu, Z. Zhou, Z.B. Zhang, X.B. Hu, Selective oxidation of cyclohexene with H2O2 catalyzed by resin supported peroxo phosphotungstic acid under mild conditions, Catal. Lett. 151 (1) (2021) 147-152. [5] D.T. Bregante, D.W. Flaherty, Periodic trends in olefin epoxidation over group IV and V framework-substituted zeolite catalysts: A kinetic and spectroscopic study, J. Am. Chem. Soc. 139 (20) (2017) 6888-6898. [6] D.T. Bregante, N.E. Thornburg, J.M. Notestein, D.W. Flaherty, Consequences of confinement for alkene epoxidation with hydrogen peroxide on highly dispersed group 4 and 5 metal oxide catalysts, ACS Catal. 8 (4) (2018) 2995-3010. [7] Y. Ding, W. Zhao, H. Hua, B.C. Ma, Π-C5H5N(CH2)15CH3]3[PW4O32]/H2O2/ethyl acetate/alkenes: A recyclable and environmentally benign alkenes epoxidation catalytic system, Green Chem. 10 (9) (2008) 910. [8] J.M. Fraile, J.I. García, J.A. Mayoral, E. Vispe, Effect of the reaction conditions on the epoxidation of alkenes with hydrogen peroxide catalyzed by silica-supported titanium derivatives, J. Catal. 204 (1) (2001) 146-156. [9] K. Hasan, N. Brown, C.M. Kozak, Iron-catalyzed epoxidation of olefins using hydrogen peroxide, Green Chem. 13 (5) (2011) 1230. [10] W. Zhao, B.C. Ma, H. Hua, Y.S. Zhang, Y. Ding, Environmentally friendly and highly efficient alkenes epoxidation system consisting of[π-C5H5N(CH2)11CH3]3PW4O32/H2O2/ethyl acetate/olefin, Catal. Commun. 9 (14) (2008) 2455-2459. [11] E.J. Marek, E.G.C. Conde, Effect of catalyst preparation and storage on chemical looping epoxidation of ethylene, Chem. Eng. J. 417 (2021) 127981. [12] F.F. Li, J. Tang, Q.P. Ke, Y. Guo, M.N. Ha, C. Wan, Z.P. Lei, J. Gu, Q. Ling, V.N. Nguyen, W.C. Zhan, Investigation into enhanced catalytic performance for epoxidation of styrene over LaSrCoxFe2-xO6 double perovskites: The role of singlet oxygen species promoted by the photothermal effect, ACS Catal. 11 (19) (2021) 11855-11866. [13] K. Schröder, B. Join, A.J. Amali, K. Junge, X. Ribas, M. Costas, M. Beller, A biomimetic iron catalyst for the epoxidation of olefins with molecular oxygen at room temperature, Angew. Chem. Int. Ed. 50 (6) (2011) 1425-1429. [14] Q.H. Tang, Q.H. Zhang, H.L. Wu, Y. Wang, Epoxidation of styrene with molecular oxygen catalyzed by cobalt(II)-containing molecular sieves, J. Catal. 230 (2) (2005) 384-397. [15] Y.L. Wang, J. Deng, C. Zhang, W.F. Wu, Q.J. Xie, Y.C. Liu, Z.H. Fu, Epoxidation of cyclohexene with molecular oxygen by electrolysis combined with chemical catalysis, J. Iran. Chem. Soc. 11 (6) (2014) 1723-1729. [16] C.R. Qi, J.Q. Hu, X. Zhou, Q. Wang, W.F. Xiong, L. Wang, R.K. Ye, G. Xiang, Epoxidation of alkenes with molecular oxygen as the oxidant in the presence of nano-Al2O3, Synlett 31 (18) (2020) 1789-1794. [17] D. Lin, Q.D. Zhang, Z.X. Qin, Q. Li, X. Feng, Z.N. Song, Z.P. Cai, Y.B. Liu, X.B. Chen, D. Chen, S. Mintova, C.H. Yang, Reversing titanium oligomer formation towards high-efficiency and green synthesis of titanium-containing molecular sieves, Angew. Chem. Int. Ed. 60 (7) (2021) 3443-3448. [18] Z.N. Song, X. Feng, N. Sheng, D. Lin, Y.C. Li, Y.B. Liu, X.B. Chen, X.G. Zhou, de Chen, C.H. Yang, Propene epoxidation with H2 and O2 on Au/TS-1 catalyst: Cost-effective synthesis of small-sized mesoporous TS-1 and its unique performance, Catal. Today 347 (2020) 102-109. [19] J.G. Wang, T. Yokoi, J.N. Kondo, T. Tatsumi, Y.L. Zhao, Titanium(IV) in the organic-structure-directing-agent-free synthesis of hydrophobic and large-pore molecular sieves as redox catalysts, ChemSusChem 8 (15) (2015) 2476-2480. [20] D.D. Aggrawal, D. Bhat, Halogenated tetraphenyl porphyrin; iodosylbenzene an efficient catalytic system for olefin epoxidation, J. Porphyrins Phthalocyanines 19 (10) (2015) 1123-1129. [21] L.D. Dias, R.M.B. Carrilho, C.A. Henriques, G. Piccirillo, A. Fernandes, L.M. Rossi, M. Filipa Ribeiro, M.J.F. Calvete, M.M. Pereira, A recyclable hybrid manganese(III) porphyrin magnetic catalyst for selective olefin epoxidation using molecular oxygen, J. Porphyrins Phthalocyanines 22 (4) (2018) 331-341. [22] N. Candu, M. Tudorache, M. Florea, E. Ilyes, F. Vasiliu, I. Mercioniu, S.M. Coman, I. Haiduc, M. Andruh, V.I. Pârvulescu, Postsynthetic modification of a metal-organic framework (MOF) structure for enantioselective catalytic epoxidation, ChemPlusChem 78 (5) (2013) 443-450. [23] H.F. Zhang, X.H. Lu, L. Yang, Y. Hu, M.Y. Yuan, C.L. Wang, Q.R. Liu, F.F. Yue, D. Zhou, Q.H. Xia, Efficient air epoxidation of cycloalkenes over bimetal-organic framework ZnCo-MOF materials, Mol. Catal. 499 (2021) 111300. [24] L.I. Kuznetsova, N.I. Kuznetsova, Cyclohexane oxidation with an O2-H2 mixture in the presence of a two-component Pt/C-heteropoly acid catalyst and ionic liquids, Kinetics Catal. 58 (5) (2017) 522-532. [25] M. Masteri-Farahani, M. Modarres, Wells-Dawson heteropoly acid immobilized inside the nanocages of SBA-16 with ship-in-a-bottle method: A new recoverable catalyst for the epoxidation of olefins, J. Mol. Catal. A Chem. 417 (2016) 81-88. [26] C. Peng, X.H. Lu, X.T. Ma, Y. Shen, C.C. Wei, J. He, D. Zhou, Q.H. Xia, Highly efficient epoxidation of cyclohexene with aqueous H2O2 over powdered anion-resin supported solid catalysts, J. Mol. Catal. A Chem. 423 (2016) 393-399. [27] W.J. Cai, Y. Zhou, R.L. Bao, B. Yue, H.Y. He, Catalytic epoxidation of cyclohexene over mesoporous-silica immobilized keggin-type tungstophosphoric acid, Chin. J. Catal. 34 (1) (2013) 193-199. [28] J.H. Sun, X.X. Zhao, G.X. Sun, S. Zeb, Y. Cui, Q. You, Thermodynamic and kinetic study on the catalytic epoxidation of allyl chloride with H2O2 by new catalyst [(C18H37)2(CH3)2N]3{PO4[W(O)(O2)2]4}, Chem. Eng. J. 398 (2020) 125051. [29] C. Venturello, E. Alneri, M. Ricci, A new, effective catalytic system for epoxidation of olefins by hydrogen peroxide under phase-transfer conditions, J. Org. Chem. 48 (21) (1983) 3831-3833. [30] A.M. Al-Ajlouni, Ö. Sağlam, T. Diafla, F.E. Kühn, Kinetic studies on phenylphosphopolyperoxotungstates catalyzed epoxidation of olefins with hydrogen peroxide, J. Mol. Catal. A Chem. 287 (1-2) (2008) 159-164. [31] E.H. Balbolov, S.V. Kotov, T.M. Kolev, M.G. Topuzova, Kinetics and mechanism of the catalytic epoxidation of cyclohexene with tert-butyl hydroperoxide in the presence of molybdenum-squarate complex, React. Kinetics Catal. Lett. 97 (1) (2009) 51-57. [32] G.S. Owens, A. Durazo, M.M. Abu-Omar, Kinetics of MTO-catalyzed olefin epoxidation in ambient temperature ionic liquids: UV/Vis and 2H NMR study, Chemistry 8 (13) (2002) 3053-3059. [33] D.A. Ruddy, T.D. Tilley, Kinetics and mechanism of olefin epoxidation with aqueous H2O2 and a highly selective surface-modified TaSBA15 heterogeneous catalyst, J. Am. Chem. Soc. 130 (33) (2008) 11088-11096. [34] D.C. Duncan, R.C. Chambers, E. Hecht, C.L. Hill, Mechanism and dynamics in the H3[PW12O40]-catalyzed selective epoxidation of terminal olefins by H2O2. formation, reactivity, and stability of{PO4[WO(O2)2]4}3-, J. Am. Chem. Soc. 117 (2) (1995) 681-691. [35] H. Chen, W.L. Dai, R.H. Gao, Y. Cao, H.X. Li, K.N. Fan, New green catalytic manufacture of glutaric acid from the oxidation of cyclopentane-1, 2-diol with aqueous hydrogen peroxide, Appl. Catal. A Gen. 328 (2) (2007) 226-236. [36] Y. Shen, X.H. Lu, C.C. Wei, X.T. Ma, C. Peng, J. He, D. Zhou, Q.H. Xia, Highly selective mono-epoxidation of dicyclopentadiene with aqueous H2O2 over heterogeneous peroxo-phosphotungstic catalysts, Mol. Catal. 433 (2017) 185-192. [37] X. Zuwei, Z. Ning, S. Yu, L. Kunlan, Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide, Science 292 (5519) (2001) 1139-1141. |