[1] A. Bastos, C. Torres, A. Mazumder, H. de Lasa, CO2 biomass fluidized gasification: Thermodynamics and reactivity studies, Can. J. Chem. Eng. 96 (10) (2018) 2176-2184. [2] X. K. Ku, J Wang, H. H. Jin, J. Z. Lin, Effects of operating conditions and reactor structure on biomass entrained-flow gasification, Renew. Energy 139 (2019) 781-795. [3] M. Asadullah, Biomass gasification gas cleaning for downstream applications: A comparative critical review, Renew. Sustain. Energy Rev. 40 (2014) 118-132. [4] Mara Del Grosso, Balaji Sridharan, Christos Tsekos, Sikke Klein, Wiebren de Jong, A modelling based study on the integration of 10 MWth indirect torrefied biomass gasification, methanol and power production, Biomass Bioenergy 136 (2020) 105529. [5] M. Santasnachok, E. Sutheerasak, C. Chinwanitcharoen, W. Ruengphrathuengsuka, Methanol production from algae biomass gasification derived syngas: A modeling study, Int. J. Smart Grid Clean Energy (2020) 865-871. [6] C. Chen, Y.Q. Jin, J.H. Yan, Y. Chi, Simulation of municipal solid waste gasification for syngas production in fixed bed reactors, J. Zhejiang Univ. Sci. A Appl. Phys. & Eng. 11 (2010) (8)619-628. [7] Martin Gassner, François Maréchal, Thermo-economic process model for thermochemical production of Synthetic Natural Gas (SNG) from lignocellulosic biomass, Biomass Bioenergy 33 (11) (2009) 1587-1604. [8] P. Kumar, V. C. Srivastava, I. M. Mishra, Synthesis and characterization of Ce-La oxides for the formation of dimethyl carbonate by transesterification of propylene carbonate, Catal. Commun. 60 (2015) 27-31. [9] M.C. Figueiredo, V. Trieu, S. Eiden, M.T.M. Koper, Spectro-electrochemical examination of the formation of dimethyl carbonate from CO and methanol at different electrode materials, J. Am. Chem. Soc. 139 (41) (2017) 14693-14698. [10] H. Huang, R.C. Samsun, R. Peters, D. Stolten, Greener production of dimethyl carbonate by the Power-to-Fuel concept: A comparative techno-economic analysis, Green Chem. 23 (4) (2021) 1734-1747. [11] W. Sun, R. N. Shi, X. H. Wang, S. S. Liu, X. X. Han, C. F. Zhao, Z. Li, J. Ren, Density-functional theory study of dimethyl carbonate synthesis by methanol oxidative carbonylation on single-atom Cu1/graphene catalyst, Appl. Surf. Sci. 425 (2017) 291-300. [12] J.Q. Wang, J. Sun, W.G. Cheng, C.Y. Shi, K. Dong, X.P. Zhang, S.J. Zhang, Synthesis of dimethyl carbonate catalyzed by carboxylic functionalized imidazolium salt via transesterification reaction, Catal. Sci. Technol. 2 (3) (2012) 600-605. [13] N.T. Nivangune, V.V. Ranade, A.A. Kelkar, MgFeCe ternary layered double hydroxide as highly efficient and recyclable heterogeneous base catalyst for synthesis of dimethyl carbonate by transesterification, Catal Lett 147 (10) (2017) 2558-2569. [14] D.J. Zhu, An efficient catalyst Co(salophen) for synthesis of diethyl carbonate by oxidative carbonylation of ethanol, Fuel 90 (6) (2011) 2098-2102. [15] Y. Yan, X. Ding, S. Wang, Y. Wang, Macrokinetics and numerical simulation of the dimethyl carbonate synthesis in the fixed-bed reactor, Chemical Reaction Engineering and Technology, 2016, 32(3): 252-260. (in Chinese) [16] H.Z. Tan, Z.N. Chen, Z.N. Xu, J. Sun, Z.Q. Wang, R. Si, W. Zhuang, G.C. Guo, Synthesis of high-performance and high-stability Pd(II)/NaY catalyst for CO direct selective conversion to dimethyl carbonate by rational design, ACS Catal. 9 (4) (2019) 3595-3603. [17] W. Guo, B. Zhang, J. Zhang, Z. Q. Wu, Y. W. Li, B. L. Yang, Liquid chemical looping gasification of biomass: Thermodynamic analysis on cellulose, Chin. J. Chem. Eng., 9 (2021) 79-88. [18] A. AlNouss, Techno-economic and sensitivity analysis of coconut coir pith-biomass gasification using ASPEN PLUS, Appl. Energy 261 (2020) 114350. [19] L. Zhou, K. Deshpande, X. Zhang, R.K. Agarwal, Process simulation of Chemical Looping Combustion using ASPEN plus for a mixture of biomass and coal with various oxygen carriers, Energy 195 (2020) 116955. [20] L.H. Shen, J.H. Wu, J. Xiao, Q.L. Song, R. Xiao, Chemical-looping combustion of biomass in a 10 kWthReactor with iron oxide As an oxygen carrier, Energy Fuels 23 (5) (2009) 2498-2505. [21] F. X. Li, L. Zeng, L. S. Fan, Biomass direct chemical looping process: Process simulation, Fuel 89 (12) (2010) 3773-3784. [22] N. Chen, M.T. Lusk, A.C.T. Van Duin, W.A. Goddard, Mechanical properties of connected carbon nanorings via molecular dynamics simulation, Phys. Rev. B Condens. Matter Mater. Phys. 72 (8) (2005) 5416-1-5416-9. [23] M. Zheng, X. X. Li, M. J. Wang, L. Guo, Dynamic profiles of tar products during Naomaohu coal pyrolysis revealed by large-scale reactive molecular dynamic simulation, Fuel 253 (2019) 910-920. [24] M. Zheng, X.X. Li, J. Liu, Z. Wang, X.M. Gong, L. Guo, W.L. Song, Pyrolysis of Liulin coal simulated by GPU-based ReaxFF MD with cheminformatics analysis, Energy Fuels 28 (1) (2013) 522-534. [25] Fidel Castro-Marcano, Michael F. Russo Jr., Adri C.T. van Duin, Jonathan P. Mathews, Pyrolysis of a large-scale molecular model for Illinois no. 6 coal using the ReaxFF reactive force field, J. Anal. Appl. Pyrolysis 109 (2014) 79-89. [26] S. Bhoi, T. Banerjee, K. Mohanty, Molecular dynamic simulation of spontaneous combustion and pyrolysis of brown coal using ReaxFF, Fuel 136 (2014) 326-333. [27] L.M. Wendt, H.Y. Zhao, Review on bioenergy storage systems for preserving and improving feedstock value, Front. Bioeng. Biotechnol. 8 (2020) 370. [28] E. Adler, Lignin chemistry—past, present and future, Wood Sci. Technol. 11 (3) (1977) 169-218. [29] A. Beste, ReaxFF study of the oxidation of softwood lignin in view of carbon fiber production, Energy Fuels 28 (11) (2014) 7007-7013. [30] H. Pińkowska, M. Krzywonos, P. Wolak, A. Złocińska, Production of uronic acids by hydrothermolysis of pectin as a model substance for plant biomass waste, Green Process. Synth. 8 (1) (2019) 683~690. [31] H.Q. Li, Molecular dynamics investigation on the lignin gasification in supercritical water, Fuel Process. Technol. 192 (2019) 203-209. [32] A. Gooneie, J. Gonzalez-Gutierrez, C. Holzer, Atomistic modelling of confined polypropylene chains between ferric oxide substrates at melt temperature, Polymers 8 (10) (2016) 361-380. [33] F.X. Huang, S.P. Jin, Investigation of biomass (pine wood) gasification: Experiments and Aspen Plus simulation, Energy Sci. Eng. 7 (4)(2019) 1179-1187. |