[1] T. Fujimura, M. Kunimoto, Y. Fukunaka, T. Homma, Analysis of the hydrogen evolution reaction at Ni micro-patterned electrodes, Electrochimica Acta 368 (2021) 137678. [2] J.A.Turner, Sustainable hydrogen production, Science 305 (5686) (2004) 972-974. [3] Y. Yan, B.Y. Xia, Z.C. Xu, X.Wang, Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction, ACS Catal. 4 (6) (2014) 1693-1705. [4] A. Chavda, P. Mehta, A. Harichandan, Numerical analysis of multiphase flow in chemical looping reforming process for hydrogen production and CO2 capture, Exp. Comput. Multiph. Flow4 (4) (2022) 360-376. [5] S. Shiva Kumar, V. Himabindu, Hydrogen production by PEM water electrolysis - A review, Mater. Sci. Energy Technol. 2 (3) (2019) 442-454. [6] X.L. Jin, X.Y. Wang, H.M. Zhang, Q. Xia, D.B. Wei, J.J. Yue, Influence of solution conductivity on contact glow discharge electrolysis, Plasma Chem Plasma Process 30 (3) (2010) 429-436. [7] G.B. Alteri, M. Bonomo, F. Decker, D. Dini, Contact glow discharge electrolysis: effect of electrolyte conductivity on discharge voltage, Catalysts 10 (10) (2020) 1104. [8] S.K. Sen Gupta, R.Singh, Cathodic contact glow discharge electrolysis: its origin and non-faradaic chemical effects, Plasma Sources Sci. Technol. 26 (1) (2016) 015005. [9] A. Allagui, A.S. Elwakil, On the N-shaped conductance and hysteresis behavior of contact glow discharge electrolysis, Electrochimica Acta 168 (2015) 173-177. [10] J.K. Lee, C. Lee, K.F. Fahy, B.Z. Zhao, J.M. LaManna, E. Baltic, D.L. Jacobson, D.S. Hussey, A. Bazylak, Critical Current density as a performance indicator for gas-evolving electrochemical devices, Cell Rep. Phys. Sci. 1 (8) (2020) 100147. [11] A. Taqieddin, R. Nazari, L. Rajic, A. Alshawabkeh, Review-Physicochemical hydrodynamics of gas bubbles in two phase electrochemical systems, J. Electrochem. Soc. 164 (13) (2017) E448-E459. [12] K.J. Vachaparambil, K.E.Einarsrud, Explanation of bubble nucleation mechanisms: a gradient theory approach, J. Electrochem. Soc. 165 (10) (2018) E504-E512. [13] A. Milchev, Nucleation phenomena in electrochemical systems: thermodynamic concepts, ChemTexts 2 (1) (2016) 2. [14] A. Angulo, P. van der Linde, H. Gardeniers, M. Modestino, D. Fernández Rivas, Influence of bubbles on the energy conversion efficiency of electrochemical reactors, Joule 4 (3) (2020) 555-579. [15] J. Mostany, B.R. Scharifker, K. Saavedra, C. Borrás, Electrochemical nucleation and the classical theory: Overpotential and temperature dependence of the nucleation rate, Russ J Electrochem 44 (6) (2008) 652-658. [16] S.F. Jones, G.M. Evans, K.P. Galvin, Bubble nucleation from gas cavities—a review, Adv. Colloid Interface Sci. 80 (1) (1999) 27-50. [17] Y. Liu, S.J. Dillon, in situ observation of electrolytic H2 evolution adjacent to gold cathodes, Chem. Commun. 50 (14) (2014) 1761-1763. [18] S.R. German, M.A. Edwards, Q.J. Chen, Y.W. Liu, L. Luo, H.S. White, Electrochemistry of single nanobubbles. Estimating the critical size of bubble-forming nuclei for gas-evolving electrode reactions, Faraday Discuss. 193 (0) (2016) 223-240. [19] Y.L. Liu, C. Jin, Y.W. Liu, K.H. Ruiz, H. Ren, Y.C. Fan, H.S. White, Q.J.Chen, Visualization and quantification of electrochemical H2 bubble nucleation at Pt, Au, and MoS2 substrates, ACS Sens. 6 (2) (2021) 355-363. [20] S. Maheshwari, C. van Kruijsdijk, S. Sanyal, A.D. Harvey, Nucleation and growth of a nanobubble on rough surfaces, Langmuir 36 (15) (2020) 4108-4115. [21] Y.A. Perez Sirkin, E.D. Gadea, D.A. Scherlis, V. Molinero, Mechanisms of nucleation and stationary states of electrochemically generated nanobubbles, J. Am. Chem. Soc. 141 (27) (2019) 10801-10811. [22] H.E.Darling, Conductivity of sulfuric acid solutions, J. Chem. Eng. Data 9 (3) (1964) 421-426. [23] H.K. Park, B.J. Chung, Estimation of critical number of hydrogen bubbles for critical current density using the dry spot model, Chem. Eng. Sci. 249 (2022) 117344. [24] H.W. Coleman, W.G. Steele, Experimentation and uncertainty analysis for engineers, 2nd ed., John Wiley & Son Inc. (1999). |