[1] Z.B. Xu, D.C.W. Tsang, Redox-induced transformation of potentially toxic elements with organic carbon in soil, carbon res 1 (1) (2022) 9. [2] S.C. Shao, X.W. Wu, Microbial degradation of tetracycline in the aquatic environment: A review, Crit. Rev. Biotechnol. 40 (7) (2020) 1010-1018. [3] Z.M. Lv, W.W. Chen, Y.W. Cai, K.C. Chen, K.X. Li, M. Fang, X.L. Tan, X.K. Wang, Homogeneous Ni nanoparticles anchored on mesoporous N-doped carbon as highly efficient catalysts for Cr(VI), tetracycline and dyes reduction, Appl. Surf. Sci. 575 (2022) 151748. [4] Y.W. Cai, Q. Ling, Y.M. Yi, Z.S. Chen, H. Yang, B.W. Hu, L.P. Liang, X.K. Wang, Application of covalent organic frameworks in environmental pollution management, Appl. Catal. A Gen. 643 (2022) 118733. [5] Y.T. Zou, Y.Z. Hu, Z.W. Shen, L. Yao, D.Y. Tang, S. Zhang, S.Q. Wang, B.W. Hu, G.X. Zhao, X.K. Wang, Application of aluminosilicate clay mineral-based composites in photocatalysis, J. Environ. Sci. 115 (2022) 190-214. [6] K. Zhang, H.H. Wu, H.Q. Huo, Y.L. Ji, Y. Zhou, C.J. Gao, Recent advances in nanofiltration, reverse osmosis membranes and their applications in biomedical separation field, Chin. J. Chem. Eng. 49 (2022) 76-99. [7] H.G. Liang, C.X. Zhu, A.H. Wang, K. Palanisamy, F. Chen, Facile synthesis of NiAl2O4/g-C3N4 composite for efficient photocatalytic degradation of tetracycline, J. Environ. Sci. 127 (2023) 700-713. [8] K. Perumal, S. Shanavas, T. Ahamad, A. Karthigeyan, P. Murugakoothan, Construction of Ag2CO3/BiOBr/CdS ternary composite photocatalyst with improved visible-light photocatalytic activity on tetracycline molecule degradation, J. Environ. Sci. 125 (2023) 47-60. [9] Y.Q. Wang, K. Li, M.Y. Shang, Y.Z. Zhang, Y. Zhang, B.L. Li, Y.J. Kan, X.Q. Cao, J. Zhang, A novel partially carbonized Fe3O4@PANI-p catalyst for tetracycline degradation via peroxymonosulfate activation, Chem. Eng. J. 451 (2023) 138655. [10] C.C. Wang, M.J. Cai, Y.P. Liu, F. Yang, H.Q. Zhang, J.S. Liu, S.J. Li, Facile construction of novel organic-inorganic tetra (4-carboxyphenyl) porphyrin/Bi2MoO6 heterojunction for tetracycline degradation: Performance, degradation pathways, intermediate toxicity analysis and mechanism insight, J. Colloid Interface Sci. 605 (2022) 727-740. [11] L.L. Su, M.J. Chen, L. Gong, H. Yang, C. Chen, J. Wu, L. Luo, G. Yang, L.L. Lu, Boost activation of peroxymonosulfate by iron doped K2-xMn8O16: Mechanism and properties, Chin. J. Chem. Eng. (2022) [12] Y. Lu, Y.W. Cai, S. Zhang, L. Zhuang, B.W. Hu, S.H. Wang, J.R. Chen, X.K. Wang, Application of biochar-based photocatalysts for adsorption-(photo)degradation/reduction of environmental contaminants: Mechanism, challenges and perspective, Biochar 4 (1) (2022) 45. [13] M.Q. Qiu, L.J. Liu, Q. Ling, Y.W. Cai, S.J. Yu, S.Q. Wang, D. Fu, B.W. Hu, X.K. Wang, Biochar for the removal of contaminants from soil and water: A review, Biochar 4 (1) (2022) 19. [14] L. Yao, Y.Z. Hu, Y.T. Zou, Z.Y. Ji, S.X. Hu, C. Wang, P. Zhang, H. Yang, Z.W. Shen, D.Y. Tang, S. Zhang, G.X. Zhao, X.K.Wang, Selective and efficient photoextraction of aqueous Cr(VI) as a solid-state polyhydroxy Cr(V) complex for environmental remediation and resource recovery, Environ. Sci. Technol. 56 (19) (2022) 14030-14037. [15] L. Yao, Z.W. Shen, Z.Y. Ji, Y.Z. Hu, D.Y. Tang, G.X. Zhao, X.K. Wang, Cr(VI) detoxification and simultaneous selective recovery of Cr resource from wastewater via photo-chemical extraction using biomass, Sci. Bull. (Beijing) 67 (21) (2022) 2154-2157. [16] Y.F. Zhang, H.X. Liu, F.X. Gao, X.L. Tan, Y.W. Cai, B.W. Hu, Q.F. Huang, M. Fang, X.K. Wang, Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment, EnergyChem 4 (4) (2022) 100078. [17] P. Yukhajon, T. Somboon, S. Sansuk, Enhanced adsorption and colorimetric detection of tetracycline antibiotics by using functional phosphate/carbonate composite with nanoporous network coverage, J. Environ. Sci. (China) 126 (2023) 365-377. [18] Y.C. Jiang, M.F. Luo, Z.N. Niu, S.Y. Xu, Y. Gao, Y. Gao, W.J. Gao, J.J. Luo, R.L. Liu, In-situ growth of bimetallic FeCo-MOF on magnetic biochar for enhanced clearance of tetracycline and fruit preservation, Chem. Eng. J. 451 (2023) 138804. [19] Z.L. Yin, Y.L. Liu, S.H. Zhou, Z. Yang, W.B. Yang, Constructing zirconium based metal-organic frameworks based electrically-driven self-cleaning membrane for removal of tetracycline: Effect of ligand substitution, Chem. Eng. J. 450 (2022) 138100. [20] P. Yadav, A. Yadav, P.K. Labhasetwar, Sustainable adsorptive removal of antibiotics from aqueous streams using Fe3O4-functionalized MIL101(Fe) chitosan composite beads, Environ Sci Pollut Res 29 (25) (2022) 37204-37217. [21] J.W. Zhao, F. Gao, Y. Sun, W.Y. Fang, X.H. Li, Y.J. Dai, New use for biochar derived from bovine manure for tetracycline removal, J. Environ. Chem. Eng. 9 (4) (2021) 105585. [22] H.D. Liu, G.R. Xu, G.B. Li, Preparation of porous biochar based on pharmaceutical sludge activated by NaOH and its application in the adsorption of tetracycline, J. Colloid Interface Sci. 587 (2021) 271-278. [23] B. Li, Y. Zhang, J. Xu, Y.L. Mei, S.S. Fan, H.C. Xu, Effect of carbonization methods on the properties of tea waste biochars and their application in tetracycline removal from aqueous solutions, Chemosphere 267 (2021) 129283. [24] X.L. Liu, G. Verma, Z.S. Chen, B.W. Hu, Q.F. Huang, H. Yang, S.Q. Ma, X.K. Wang, Metal-organic framework nanocrystal-derived hollow porous materials: Synthetic strategies and emerging applications, Innov. 3 (5) (2022) 100281. [25] S. Zhang, Y. Liu, R. Ma, D.S. Jia, T. Wen, Y.J. Ai, G.X. Zhao, F. Fang, B.W. Hu, X.K.Wang, Molybdenum (VI)-oxo clusters incorporation activates g-C3N4 with simultaneously regulating charge transfer and reaction centers for boosting photocatalytic performance, Adv. Funct. Mater. 32 (38) (2022) 2204175. [26] Z.X. Liu, Z.Y. Xu, L.F. Xu, F. Buyong, T.C. Chay, Z. Li, Y.W. Cai, B.W. Hu, Y.L. Zhu, X.K. Wang, Modified biochar: Synthesis and mechanism for removal of environmental heavy metals, carbon res 1 (1) (2022) 8. [27] H. Yang, Y.F. Liu, Z.S. Chen, G.I.N. Waterhouse, S.Q. Ma, X.K. Wang, Emerging technologies for uranium extraction from seawater, Sci. China Chem. 65 (12) (2022) 2335-2337. [28] M.J. Hao, Z.S. Chen, X.L. Liu, X.H. Liu, J.Y. Zhang, H. Yang, G.I.N. Waterhouse, X.K. Wang, S.Q.Ma, Converging cooperative functions into the nanospace of covalent organic frameworks for efficient uranium extraction from seawater, CCS Chem. 4 (7) (2022) 2294-2307. [29] X.L. Liu, Y.H. Xie, M.J. Hao, Z.S. Chen, H. Yang, G.I.N. Waterhouse, S.Q. Ma, X.K. Wang, Highly efficient electrocatalytic uranium extraction from seawater over an amidoxime-functionalized In-N-C catalyst, Adv. Sci. (Weinh) 9 (23) (2022) e2201735. [30] M.Q. Qiu, B.W. Hu, Z.S. Chen, H. Yang, L. Zhuang, X.K. Wang, Challenges of organic pollutant photocatalysis by biochar-based catalysts, Biochar 3 (2) (2021) 117-123. [31] X.B. Wang, Y.J. Zhang, C.Y. Zhi, X. Wang, D.M. Tang, Y.B. Xu, Q.H. Weng, X.F. Jiang, M. Mitome, D. Golberg, Y. Bando, Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors, Nat. Commun. 4 (2013) 2905. [32] Z.S. Chen, X. He, Q. Li, H. Yang, Y. Liu, L.N. Wu, Z.X. Liu, B.W. Hu, X.K. Wang, Low-temperature plasma induced phosphate groups onto coffee residue-derived porous carbon for efficient U(VI) extraction, J. Environ. Sci. 122 (2022) 1-13. [33] M.J. Hao, Z.S. Chen, H. Yang, G.I.N. Waterhouse, S.Q. Ma, X.K. Wang, Pyridinium salt-based covalent organic framework with well-defined nanochannels for efficient and selective capture of aqueous 99TcO4-, Sci. Bull. 67 (9) (2022) 924-932. [34] S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, K.J. Balkus Jr, Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity, ACS Catal. 2 (6) (2012) 949-956. [35] H. Ren, D.D. Kulkarni, R. Kodiyath, W.N. Xu, I. Choi, V.V. Tsukruk, Competitive adsorption of dopamine and rhodamine 6G on the surface of graphene oxide, ACS Appl. Mater. Interfaces 6 (4) (2014) 2459-2470. [36] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W.Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (9-10) (2015) 1051-1069. [37] Y.C. Si, E.T. Samulski, Synthesis of water soluble graphene, Nano Lett. 8 (6) (2008) 1679-1682. [38] X.L. Wang, S. Tao, B.S. Xing, Sorption and competition of aromatic compounds and humic acid on multiwalled carbon nanotubes, Environ. Sci. Technol. 43 (16) (2009) 6214-6219. [39] X.Y. Chen, S. Shi, X.M. Han, M. Li, Y. Nian, J. Sun, W.T. Zhang, T.L. Yue, J.L. Wang, Insights into high-efficient removal of tetracycline by a codoped mesoporous carbon adsorbent, Chin. J. Chem. Eng. 44 (2022) 148-156. [40] M.B. Cao, X. Liu, H.B. Yang, Facile construction of high-performance 3D Co2C-doped CoAl2O4 fiber composites for capturing and decomposing tetracycline from aqueous solution, J. Hazard. Mater. 424 (2022) 127307. [41] B.Y. Zhang, H. Xu, M.M. Wang, L.H. Su, S.J. Zhang, Y.T. Zhang, Q.G. Wang, Bismuth (III)-based metal-organic framework for tetracycline removal via adsorption and visible light catalysis processes, J. Environ. Chem. Eng. 10 (5) (2022) 108469. |