[1] M.A.Coulter, Minamata convention on mercury, Int. Leg. Mater. 55 (3) (2016) 582-616. [2] J.W. Zhong, Y.P. Xu, Z.M. Liu, Heterogeneous non-mercury catalysts for acetylene hydrochlorination: Progress, challenges, and opportunities, Green Chem. 20 (11) (2018) 2412-2427. [3] Xu H, Luo G. Green production of PVC from laboratory to industrialization: State-of-the-art review of heterogeneous non-mercury catalysts for acetylene hydrochlorination, J. Ind. Eng. Chem. 65 (2018) 13-25. [4] Xu X., He H., Zhao J., Wang B., Gu S., Li X. The ligand coordination approach for improving the stability of low-mercury catalyst in the hydrochlorination of acetylene, Chin. J. Chem. Eng. 25 (9) (2017) 1217-1221. [5] S.K. Kaiser, A.H. Clark, L. Cartocci, F. Krumeich, J.Pérez-Ramírez, Single-atom catalysis: Sustainable synthesis of bimetallic single atom gold-based catalysts with enhanced durability in acetylene hydrochlorination (small 16/2021), Small 17 (16) (2021) 2170071. [6] Lutai, Song, Process monitoring of the Au-S bond conversion in acetylene hydrochlorination, Chin. J. Chem. Eng. 45 (2022) 32-40. [7] Xiaoyan, Li, AuCl3 on polypyrrole-modified carbon nanotubes as acetylene hydrochlorination catalysts, Appl. Catal. B Environ. 142-143 (2013) 234-240. [8] Jian, Li, Enhanced catalytic performance of activated carbon-supported ru-based catalysts for acetylene hydrochlorination by azole ligands, Appl. Catal. A Gen. 592 (2020) 117431. [9] M. Cai, H.Y. Zhang, B.C. Man, J. Li, L.F. Li, Y.Q. Li, D.Y. Xie, R.P. Deng, J.L.Zhang, Synthesis of a vinyl chloride monomer via acetylene hydrochlorination with a ruthenium-based N-heterocyclic carbene complex catalyst, Catal. Sci. Technol. 10 (11) (2020) 3552-3560. [10] X.L. Wang, G.J. Lan, Z.Z. Cheng, W.F. Han, H.D. Tang, H.Z. Liu, Y.Li, Carbon-supported ruthenium catalysts prepared by a coordination strategy for acetylene hydrochlorination, Chin. J. Catal. 41 (11) (2020) 1683-1691. [11] B.L. Wang, Y.X. Yue, C.X. Jin, J.Y. Lu, S.S. Wang, L. Yu, L.L. Guo, R.R. Li, Z.T. Hu, Z.Y. Pan, J. Zhao, X.N.Li, Hydrochlorination of acetylene on single-atom Pd/N-doped carbon catalysts: Importance of pyridinic-N synergism, Appl. Catal. B Environ. 272 (2020) 118944. [12] B. Wang, T.T. Zhang, Y.W. Liu, W. Li, H.Y. Zhang, J.L.Zhang, Phosphine-oxide organic ligand improved Cu-based catalyst for acetylene hydrochlorination, Appl. Catal. A Gen. 630 (2022) 118461. [13] Y.F. Ren, B.T. Wu, F.M. Wang, H. Li, G.J. Lv, M.S. Sun, X.B. Zhang, Chlorocuprate(i) ionic liquid as an efficient and stable Cu-based catalyst for hydrochlorination of acetylene, Catal. Sci. Technol. 9 (11) (2019) 2868-2878. [14] F. Huang, M. Peng, Y.L. Chen, X.B. Cai, X.T. Qin, N. Wang, D.Q. Xiao, L. Jin, G.Q. Wang, X.D. Wen, H.Y. Liu, D. Ma, Low-temperature acetylene semi-hydrogenation over the Pd1-Cu1 dual-atom catalyst, J. Am. Chem. Soc. 144 (40) (2022) 18485-18493. [15] F. Huang, M. Peng, Y.L. Chen, Z.R. Gao, X.B. Cai, J.L. Xie, D.Q. Xiao, L. Jin, G.Q. Wang, X.D. Wen, N. Wang, W. Zhou, H.Y. Liu, D.Ma, Insight into the activity of atomically dispersed Cu catalysts for semihydrogenation of acetylene: Impact of coordination environments, ACS Catal. 12 (1) (2022) 48-57. [16] W. Zhao, M. Zhu, B.Dai, Cobalt-nitrogen-activated carbon as catalyst in acetylene hydrochlorination, Catal. Commun. 98 (2017) 22-25. [17] L. Lian, L. Wang, H. Yan, S. Ali, J. Wang, L. Zhao, C. Yang, R. Wu, L. Ma, Non-mercury catalytic acetylene hydrochlorination over Bi/CNTs catalysts for vinyl chloride monomer production, J. Mater. Res. Technol. 9 (6) (2020) 14961-14968. [18] H. Li, B.T. Wu, F.M. Wang, X.B.Zhang, Achieving efficient and low content Ru-based catalyst for acetylene hydrochlorination based on N, N’-dimethylpropyleneurea, ChemCatChem 10 (18) (2018) 4090-4099. [19] Y.Q. Li, C.M. Zhang, H.Y. Zhang, L.F. Li, J.L. Zhang, R. Oh, L.S. Yao, M. Cai, J. Li, M.M. Zhang, F.Li, Effects of N-, P-, or O-containing ligands on gold-based complex catalysts for acetylene hydrochlorination, Appl. Catal. A Gen. 612 (2021) 118015. [20] K. Zhou, J.K. Si, J.C. Jia, J.Q. Huang, J. Zhou, G.H. Luo, F. Wei, Reactivity enhancement of N-CNTs in green catalysis of C2H2 hydrochlorination by a Cu catalyst, RSC Adv. 4 (15) (2014) 7766-7769. [21] W.L. Zhao, M.Y. Zhu, B.Dai, The preparation of Cu-g-C3N4/AC catalyst for acetylene hydrochlorination, Catalysts 6 (12) (2016) 193. [22] Y. Han, Y.L. Wang, Y. Wang, Y.B. Hu, Y. Nian, W. Li, J.L.Zhang, Pyrrolidone ligand improved Cu-based catalysts with high performance for acetylene hydrochlorination, Appl. Organomet. Chem. 35 (1) (2021) e6066. [23] H. Li, F.M. Wang, W.F. Cai, J.L. Zhang, X.B. Zhang, Hydrochlorination of acetylene using supported phosphorus-doped Cu-based catalysts, Catal. Sci. Technol. 5 (12) (2015) 5174-5184. [24] X.M. Wang, M.Y. Zhu, B.Dai, Effect of phosphorus ligand on Cu-based catalysts for acetylene hydrochlorination, ACS Sustainable Chem. Eng. 7 (6) (2019) 6170-6177. [25] Yubing, Hu, High performance of supported Cu-based catalysts modulated via phosphamide coordination in acetylene hydrochlorination, Appl. Catal. A Gen. 591 (2020) 117408. [26] Song, He, N-doped activated carbon for high-efficiency ofloxacin adsorption, Microporous Mesoporous Mater. 335 (2022) 111848. [27] X Li, P Li, X Pan, H Ma, X Bao. Deactivation mechanism and regeneration of carbon nanocomposite catalyst for acetylene hydrochlorination, Appl. Catal. B Environ. 210 (2017) 116-120. [28] Y. Wang, Y. Nian, J. Zhang, W. Li, Y. Han. MOMTPPC improved Cu-based heterogeneous catalyst with high efficiency for acetylene hydrochlorinatio. Mol Cata, 479(2019)110612. [29] Y. Jia, T. Zhang, M. Liu, J. Zhang, Y. Han. Effect of different heteroatoms anchoring a Cu single-atom catalyst on acetylene hydrochlorination J Phys Chem C, 126(48)(2022)20401-20410. [30] Liu X, Chen X, Zhang Q, C Xu. Effect of N, P co-doped activated carbon supported Cu-based catalyst for acetylene hydration, Mol. Catal. 522 (2022) 112223. [31] F. Severino, J.L. Brito, J. Laine, J.L.G. Fierro, A.L.Agudo, Nature of copper active sites in the carbon monoxide oxidation on CuAl2O4 and CuCr2O4 Spinel type catalysts, J. Catal. 177 (1) (1998) 82-95. [32] Deutsch K L, Shanks B H. Active species of copper chromite catalyst in C—O hydrogenolysis of 5-methylfurfuryl alcohol, J. Catal. 285 (1) (2012) 235-241. [33] C. Chen, L. Lin, R. Ye, L. Huang, L. Zhu, Y. Huang, Y. Qin, Y. Yao, Construction of Cu-Ce composite oxides by simultaneous ammonia evaporation method to enhance catalytic performance of Ce-Cu/SiO2 catalysts for dimethyl oxalate hydrogenation, Fuel, 290 (2020) 120083. [34] F. Huang, Y.C. Deng, Y.L. Chen, X.B. Cai, M. Peng, Z.M. Jia, J.L. Xie, D.Q. Xiao, X.D. Wen, N. Wang, Z. Jiang, H.Y. Liu, D. Ma, Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene, Nat. Commun. 10 (1) (2019) 4431. [35] P. Dubot, D. Jousset, V. Pinet, F. Pellerin, J.P.Langeron, Simulation of the LMM auger spectra of copper, Surf. Interface Anal. 12 (2) (1988) 99-104. [36] X. San, X. Gong, Y. Lu, J. Xu, L. He, D. Meng, G. Wang, J. Qi, Q. Jin, Anchoring Cu species over SiO2 for hydrogenation of dimethyl oxalate to ethyleneglycol, Catalysts, 12 (11) (2022) 1326. [37] T. Wang, Z. Jiang, Q. Tang, B.L. Wang, S.S. Wang, M.D. Yu, R.Q. Chang, Y.X. Yue, J. Zhao, X.N. Li, Interactions between atomically dispersed copper and phosphorous species are key for the hydrochlorination of acetylene, Commun. Chem. 5 (1) (2022) 2. [38] Jian, Wang, A novel S, N dual doped carbon catalyst for acetylene hydrochlorination, Appl. Catal. A Gen. 549 (2018) 68-75. |