[1] J. Liu, D.L. Mauzerall, Q. Chen, Q. Zhang, Y. Song, W. Peng, Z. Klimont, X.H. Qiu, S.Q. Zhang, M. Hu, W.L. Lin, K.R. Smith, T. Zhu, Air pollutant emissions from Chinese households: a major and underappreciated ambient pollution source, Proc. Natl. Acad. Sci. USA 113 (28) (2016) 7756-7761. [2] G.R. Zhi, Y.Y. Zhang, J.Z. Sun, M.M. Cheng, H.Y. Dang, S.J. Liu, J.C. Yang, Y.Z. Zhang, Z.G. Xue, S.Y. Li, F. Meng, Village energy survey reveals missing rural raw coal in Northern China: significance in science and policy, Environ. Pollut. 223 (2017) 705-712. [3] X. Liu, X.Y. Zhang, R.E. Zhang, X.D. Yang, M. Shan, Y.Q. Liu. Report on Chinese urban scattered coal management [M]. Beijing: Energy Foundation, Tsinghua University Research Center of Building Energy Efficiency, 2022: 9-10. [4] J. Werther, M. Saenger, E.U. Hartge, T. Ogada, Z. Siagi, Combustion of agricultural residues, Prog. Energy Combust. Sci. 26 (1) (2000) 1-27. [5] Z.H. Luo, L. Zhang, G. Li, W. Du, Y.C. Chen, H.F. Cheng, S. Tao, G.F. Shen, Evaluating co-emissions into indoor and outdoor air of EC, OC, and BC from in-home biomass burning, Atmos. Res. 248 (2021) 105247. [6] G.R. Zhi, C.H. Peng, Y.J. Chen, D.Y. Liu, G.Y. Sheng, J.M. Fu, Deployment of coal briquettes and improved stoves: possibly an option for both environment and climate, Environ. Sci. Technol. 43 (15) (2009) 5586-5591. [7] G. Shen, S. Tao, S. Wei, Y. Zhang, R. Wang, B. Wang, W. Li, H. Shen, Y. Huang, Y. Chen, H. Chen, Y. Yang, W. Wang, W. Wei, X. Wang, W. Liu, X. Wang, S.L. Masse Simonich, Reductions in emissions of carbonaceous particulate matter and polycyclic aromatic hydrocarbons from combustion of biomass pellets in comparison with raw fuel burning, Environ. Sci. Technol. 46 (11) (2012) 6409-6416. [8] Y.J. Chen, C.G. Tian, Y.L. Feng, G.R. Zhi, J. Li, G. Zhang, Measurements of emission factors of PM2.5, OC, EC, and BC for household stoves of coal combustion in China, Atmos. Environ. 109 (2015) 190-196. [9] Y. Wang, Y. Xu, Y.J. Chen, C.G. Tian, Y.L. Feng, T. Chen, J. Li, G. Zhang, Influence of different types of coals and stoves on the emissions of parent and oxygenated PAHs from residential coal combustion in China, Environ. Pollut. 212 (2016) 1-8. [10] K. He, Z.X. Shen, B. Zhang, J. Sun, H.J. Zou, M. Zhou, Z. Zhang, H.M. Xu, S.S.H. Ho, J.J. Cao, Emission profiles of volatile organic compounds from various geological maturity coal and its clean coal briquetting in China, Atmos. Res. 274 (2022) 106200. [11] L.J. Chen, L. Xing, L.J. Han, Renewable energy from agro-residues in China: solid biofuels and biomass briquetting technology, Renew. Sustain. Energy Rev. 13 (9) (2009) 2689-2695. [12] G.F. Shen, M.Xue, Comparison of carbon monoxide and particulate matter emissions from residential burnings of pelletized biofuels and traditional solid fuels, Energy Fuels 28 (6) (2014) 3933-3939. [13] H. Watanabe, J.I. Yamamoto, K. Okazaki, NOx formation and reduction mechanisms in staged O2/CO2 combustion, Combust. Flame 158 (7) (2011) 1255-1263. [14] M.J. Aho, J.P. Hämäläinen, J.L. Tummavuori, Importance of solid fuel properties to nitrogen oxide formation through HCN and NH3 in small particle combustion, Combust. Flame 95 (1-2) (1993) 22-30. [15] E.G. Garijo, A. Degn Jensen, P.Glarborg, Kinetic study of NO reduction over biomass char under dynamic conditions, Energy Fuels 17 (6) (2003) 1429-1436. [16] J.D. He, W.L. Song, S.Q. Gao, L. Dong, M. Barz, J.H. Li, W.G. Lin, Experimental study of the reduction mechanisms of NO emission in decoupling combustion of coal, Fuel Process. Technol. 87 (9) (2006) 803-810. [17] B. Tohniyaz, N. Zhao, P. Mperejekumana, Y.G. Zhou, D.Y. Chen, G. Li, G.F. Molelekwa, A.M.I. Zayan, R.J. Dong, Evaluation of PAHs, PM2.5 and gaseous emissions from solid fuel direct-fired and cross-draft stoves, Int. J. Environ. Anal. Chem. 102 (6) (2022) 1318-1331. [18] M. Kuang, Z.Q. Li, Review of gas/particle flow, coal combustion, and NOx emission characteristics within down-fired boilers, Energy 69 (2014) 144-178. [19] M. Šyc, J. Horák, F. Hopan, K. Krpec, T. Tomšej, T. Ocelka, V.Pekárek, Effect of fuels and domestic heating appliance types on emission factors of selected organic pollutants, Environ. Sci. Technol. 45 (21) (2011) 9427-9434. [20] Q. Li, J.K. Jiang, J. Qi, J.G. Deng, D.S. Yang, J.J. Wu, L. Duan, J.M.Hao, Improving the energy efficiency of stoves to reduce pollutant emissions from household solid fuel combustion in China, Environ. Sci. Technol. Lett. 3 (10) (2016) 369-374. [21] Y.F. Liu, Y. Zhang, C. Li, Y. Bai, D.M. Zhang, C.Y. Xue, G.Q. Liu, Air pollutant emissions and mitigation potential through the adoption of semi-coke coals and improved heating stoves: field evaluation of a pilot intervention program in rural China, Environ. Pollut. 240 (2018) 661-669. [22] J. Qi, Q. Li, J.J. Wu, J.K. Jiang, Z.Y. Miao, D.S. Li, Biocoal briquettes combusted in a household cooking stove: improved thermal efficiencies and reduced pollutant emissions, Environ. Sci. Technol. 51 (3) (2017) 1886-1892. [23] J. Wang, H.H. Lou, F.L. Yang, F.Q. Cheng, Development and performance evaluation of a clean-burning stove, J. Clean. Prod. 134 (2016) 447-455. [24] B. Rashidian, Y.M. Al-Abdeli, D. Patiño, F.G. Guzzomi, G.H. Yeoh, Effect of freeboard deflectors in the fixed bed combustion of biomass, Appl. Therm. Eng. 103 (2016) 543-552. [25] G.F. Shen, Changes from traditional solid fuels to clean household energies - Opportunities in emission reduction of primary PM2.5 from residential cookstoves in China, Biomass Bioenergy 86 (2016) 28-35. [26] B. Liang, H.L. Bai, D.R. Bai, X.H. Liu, Emissions of non-methane hydrocarbons and typical volatile organic compounds from various grate-firing coal furnaces, Atmos. Pollut. Res. 13 (4) (2022) 101380. [27] X.H. Liu, J. Han, N. Zhang, J.J. Wang, Status of decentralized civil heating technology in China, Bull. Chin. Acad. Sci. 34 (2019) (4)401-408. [28] J.H. Li, G.W. Xu, L.D. Yang, M. Kwauk, J.G. Zhang, Y.L. Guo, Z.Y. Zhou, A method of coal-fired smokeless combustion for NOx suppression as well as its application in household stoves, CN Pat., 95102081.1 (1995). [29] J.H. Li, Y.R. Bai, W.L. Song, NOx-suppressed smokeless coal combustion technique, In: Proceedings of International Symposium on Clean Coal Technology, Xiamen, China (1997). [30] J.H. Li, W.L. Song, Y.R. Bai, Y.N. Xu, G.W. Xu, J.G. Zhang, M.S. Guo, NOx-suppressed smokeless coal combustion and furnaces, Bull. Chin. Acad. Sci. 15 (2001) (4)206. [31] L. Dong, S.Q. Gao, W.L. Song, G.W. Xu, Experimental study of NO reduction over biomass char, Fuel Process. Technol. 88 (7) (2007) 707-715. [32] P. Glarborg, A.D. Jensen, J.E. Johnsson, Fuel nitrogen conversion in solid fuel fired systems, Prog. Energy Combust. Sci. 29 (2) (2003) 89-113. [33] A. Williams, J.M. Jones, L. Ma, M. Pourkashanian, Pollutants from the combustion of solid biomass fuels, Prog. Energy Combust. Sci. 38 (2) (2012) 113-137. [34] H.L. Li, J. Han, N. Zhang, X.H. Liu, J.D. He, W. Du, Effects of high-temperature char layer and pyrolysis gas on NOx reduction in a typical decoupling combustion coal-fired stove, J. Therm. Sci. 28 (1) (2019) 40-50. [35] J. Han, X.H. Liu, J.D. He, Experimental study on the combustion of typical coal fuels in household decoupling stoves, Chin. J. Process Eng. 20 (6) (2020)728-736. [36] Y. Zhou, D.W. Huang, J.L. Lang, T. Zi, D.S. Chen, Y.Y. Zhang, S.Y. Li, Y.F. Jiao, S.Y. Cheng, Improved estimation of rural residential coal emissions considering coal-stove combinations and combustion modes, Environ. Pollut. 272 (2021) 115558. [37] N.N. Jin, L. Guo, X.H. Liu, Machine learning-aided optimization of coal decoupling combustion for lowering NO and CO emissions simultaneously, Comput. Chem. Eng. 162 (2022) 107822. [38] Z. Husain, S.S. Tiwari, A.B. Pandit, J.B.Joshi, Computational fluid dynamics study of biomass cook stove—part 1: hydrodynamics and homogeneous combustion, Ind. Eng. Chem. Res. 59 (9) (2020) 4161-4176. [39] A. Kaundal, S. Powar, A. Dhar, Numerical investigation of the effect of air supply on cook stove performance, Inhal Toxicol (2021) 1-11. [40] T. Klason, X.S. Bai, Computational study of the combustion process and NO formation in a small-scale wood pellet furnace, Fuel 86 (10-11) (2007) 1465-1474. [41] A. Shiehnejadhesar, R. Scharler, R. Mehrabian, I. Obernberger, Development and validation of CFD models for gas phase reactions in biomass grate furnaces considering gas streak formation above the packed bed, Fuel Process. Technol. 139 (2015) 142-158. [42] B. Peters, Measurements and application of a discrete particle model (DPM) to simulate combustion of a packed bed of individual fuel particles, Combust. Flame 131 (1-2) (2002) 132-146. [43] E. Simsek, B. Brosch, S. Wirtz, V. Scherer, F. Krüll, Numerical simulation of grate firing systems using a coupled CFD/discrete element method (DEM), Powder Technol. 193 (3) (2009) 266-273. [44] A.H. Mahmoudi, M. Markovic, B. Peters, G. Brem, An experimental and numerical study of wood combustion in a fixed bed using Euler-Lagrange approach (XDEM), Fuel 150 (2015) 573-582. [45] J. Porteiro, J. Collazo, D. Patiño, E. Granada, J.C. Moran Gonzalez, J.L.Míguez, Numerical modeling of a biomass pellet domestic boiler, Energy Fuels 23 (2) (2009) 1067-1075. [46] J. Collazo, J. Porteiro, J.L. Míguez, E. Granada, M.A. Gómez, Numerical simulation of a small-scale biomass boiler, Energy Convers. Manag. 64 (2012) 87-96. [47] M.A. Gómez, J. Porteiro, D. Patiño, J.L. Míguez, CFD modelling of thermal conversion and packed bed compaction in biomass combustion, Fuel 117 (2014) 716-732. [48] V. Yakhot, S.A. Orszag, Renormalization-group analysis of turbulence, Phys. Rev. Lett. 57 (14) (1986) 1722-1724. [49] E.H. Chui, G.D. Raithby, Computation of radiant heat transfer on a nonorthogonal mesh using the finite-volume method, Numer. Heat Transf. B Fundam. 23 (3) (1993) 269-288. [50] G.D. Raithby, E.H.Chui, A finite-volume method for predicting a radiant heat transfer in enclosures with participating media, J. Heat Transf. 112 (2) (1990) 415-423. [51] B.F. Magnussen, B.H. Hjertager, On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion, Symp. Int. Combust. 16 (1) (1977) 719-729. [52] S. Badzioch, P.G.W.Hawksley, Kinetics of thermal decomposition of pulverized coal particles, Ind. Eng. Chem. Proc. Des. Dev. 9 (4) (1970) 521-530. [53] C.S. Wang, G.F. Berry, K.C. Chang, A.M. Wolsky, Combustion of pulverized coal using waste carbon dioxide and oxygen, Combust. Flame 72 (3) (1988) 301-310. [54] E.S. Hecht, C.R. Shaddix, J.S. Lighty, Analysis of the errors associated with typical pulverized coal char combustion modeling assumptions for oxy-fuel combustion, Combust. Flame 160 (8) (2013) 1499-1509. [55] P. Burchill, L.S. Welch, Variation of nitrogen content and functionality with rank for some UK bituminous coals, Fuel 68 (1) (1989) 100-104. [56] E. Desroches-Ducarne, J.C. Dolignier, E. Marty, G. Martin, L. Delfosse, Modelling of gaseous pollutants emissions in circulating fluidized bed combustion of municipal refuse, Fuel 77 (13) (1998) 1399-1410. [57] H. Thunman, B. Leckner, F. Niklasson, F. Johnsson, Combustion of wood particles—a particle model for eulerian calculations, Combust. Flame 129 (1-2) (2002) 30-46. [58] P.R. Solomon, M.A. Serio, E.M. Suuberg, Coal pyrolysis: experiments, kinetic rates and mechanisms, Prog. Energy Combust. Sci. 18 (2) (1992) 133-220. [59] J.J. Wang, S.W. Hu, X.H. Liu, Kinetic modelling and experimental validation of single large particle combustion of coal char, Chem. Eng. J. 450 (2022) 138227. [60] K.M. Bryden, K.W. Ragland, C.J. Rutland, Modeling thermally thick pyrolysis of wood, Biomass Bioenergy 22 (1) (2002) 41-53. [61] L.S. Johansson, B. Leckner, L. Gustavsson, D. Cooper, C. Tullin, A. Potter, Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets, Atmos. Environ. 38 (25) (2004) 4183-4195. [62] J.A. Miller, C.T. Bowman, Mechanism and modeling of nitrogen chemistry in combustion, Prog. Energy Combust. Sci. 15 (4) (1989) 287-338. [63] A. Tomita, Suppression of nitrogen oxides emission by carbonaceous reductants, Fuel Process. Technol. 71 (1-3) (2001) 53-70. [64] H.L. Du, M. Zhang, Y.L. Zhang, Y.H. Luo, Characteristics of NO reduction by char layer in fixed-bed coal combustion, Energy Sources A Recovery Util. Environ. Eff. 39 (10) (2017) 963-970. [65] P.G. Kristensen, P. Glarborg, K. Dam-Johansen, Nitrogen chemistry during burnout in fuel-staged combustion, Combust. Flame 107 (3) (1996) 211-222. [66] E. Vilas, U. Skifter, A. Degn Jensen, C. López, J. Maier, P.Glarborg, Experimental and modeling study of biomass reburning, Energy Fuels 18 (5) (2004) 1442-1450. [67] J. Ballester, R. Ichaso, A. Pina, M.A. González, S. Jiménez, Experimental evaluation and detailed characterisation of biomass reburning, Biomass Bioenergy 32 (10) (2008) 959-970. [68] S. Munir, W. Nimmo, B.M. Gibbs, The effect of air staged, co-combustion of pulverised coal and biomass blends on NOx emissions and combustion efficiency, Fuel 90 (1) (2011) 126-135. [69] X.D. Yang, Z.Y. Luo, X.R. Liu, C.J. Yu, Y.A. Li, Y.C. Ma, Experimental and numerical investigation of the combustion characteristics and NO emission behaviour during the co-combustion of biomass and coal, Fuel 287 (2021) 119383. [70] C.G. Yin, L.A. Rosendahl, S.K. Kær, Grate-firing of biomass for heat and power production, Prog. Energy Combust. Sci. 34 (6) (2008) 725-754. [71] B. Leckner, M. Karlsson, Gaseous emissions from circulating fluidized bed combustion of wood, Biomass Bioenergy 4 (5) (1993) 379-389. [72] H. Zhou, A.D. Jensen, P. Glarborg, A. Kavaliauskas, Formation and reduction of nitric oxide in fixed-bed combustion of straw, Fuel 85 (5-6) (2006) 705-716. [73] Y. Shu, H.C. Wang, J.W. Zhu, G. Tian, J.Y. Huang, F. Zhang, An experimental study of heterogeneous NO reduction by biomass reburning, Fuel Process. Technol. 132 (2015) 111-117. |