[1] K. Piperopoulos, A. Kaldellis, P. Oustadakis, M. Perraki, P.E. Tsakiridis, Valorization of aluminum salt slag washed residue in the production of portland cement clinker, J. Sustain. Metall. 8 (1) (2022) 102-111. [2] Y.L. Zhang, M.X. Sun, J.L. Hong, X.F. Han, J. He, W.X. Shi, X.Z. Li, Environmental footprint of aluminum production in China, J. Clean. Prod. 133 (2016) 1242-1251. [LinkOut] [3] E.D. Wannaz, J.H. Rodriguez, T. Wolfsberger, H.A. Carreras, M.L. Pignata, A. Fangmeier, J. Franzaring, Accumulation of aluminium and physiological status of tree foliage in the vicinity of a large aluminium smelter, Sci. World J. 2012 (2012) 865927.[PubMed] [4] K. Tschöpe, C. Schøning, J. Rutlin, T. Grande, Chemical degradation of cathode linings in hall-héroult cells—an autopsy study of three spent pot linings, Metall. Mater. Trans. B 43 (2) (2012) 290-301.[LinkOut] [5] G. Holywell, R. Breault, An overview of useful methods to treat, recover, or recycle spent potlining, JOM 65 (11) (2013) 1441-1451.[LinkOut] [6] M.Z. Xie, R.B. Li, H.L. Zhao, W. Liu, T.T. Lu, F.Q. Liu, Detoxification of spent cathode carbon blocks from aluminum smelters by joint controlling temperature-vacuum process, J. Clean. Prod. 249 (2020) 119370.[LinkOut] [7] M.J. Palmieri, L.F. Andrade-Vieira, M.V.C. Trento, M.W. Faria Eleutério, J. Luber, L.C. Davide, S. Marcussi, Cytogenotoxic effects of spent pot liner (SPL) and its main components on human leukocytes and meristematic cells of allium cepa, Water Air Soil Pollut. 227 (5) (2016) 1-10.[LinkOut] [8] Z. Zhu, L. Xu, Z.H. Han, J.H. Liu, L.B. Zhang, S.H. Tian, Y.C. Xu, S. Koppala, Optimization of response surface methodology (RSM) for defluorination of spent carbon cathode (SCC) in fire-roasting aluminum electrolysis, Miner. Eng. 182 (2022) 107565.[LinkOut] [9] M. Sørlie, H. Gran, H.A. Øye, Property Changes of Cathode Lining Materials During Cell Operation, in: A. Tomsett, J. Johnson (Eds.) Essential Readings in Light Metals: Volume 4 Electrode Technology for Aluminum Production, Springer International Publishing, Cham, Switzerland 2016, pp. 936-945. [10] R. Breault, S. Poirier, G. Hamel, A. Pucci, A 'green' way to deal with spent pot lining, Alum. Int. Today, 23 (2) (2011) 22. [11] J.G. Zhang, Z.C. Teng, K.H. Han, Y.J. Li, M.M. Wang, Co-combustion characteristics and kinetics of meager coal and spent cathode carbon block by TG-MS analysis, Arab. J. Chem. 14 (7) (2021) 103198.[LinkOut] [12] R.T. Zhan, Z. Oldenburg, L. Pan, Recovery of active cathode materials from lithium-ion batteries using froth flotation, Sustain. Mater. Technol. 17 (2018) e00062.[LinkOut] [13] Z.N. Shi, W. Li, X.W. Hu, B.J. Ren, B.L. Gao, Z.W. Wang, Recovery of carbon and cryolite from spent pot lining of aluminium reduction cells by chemical leaching, Trans. Nonferrous Met. Soc. China 22 (1) (2012) 222-227.[LinkOut] [14] Y.W. Wang, J.P. Peng, Y.Z. Di, Separation and recycling of spent carbon cathode blocks in the aluminum industry by the vacuum distillation process, JOM 70 (9) (2018) 1877-1882.[LinkOut] [15] J. Xiao, J. Yuan, Z.L. Tian, K. Yang, Z. Yao, B.L. Yu, L.Y. Zhang, Comparison of ultrasound-assisted and traditional caustic leaching of spent cathode carbon (SCC) from aluminum electrolysis, Ultrason. Sonochem. 40 (2018) 21-29.[PubMed] [16] Z. Zhu, L. Xu, Z.H. Han, J.H. Liu, L.B. Zhang, C.X. Yang, Z.B. Xu, P. Liu, Defluorination study of spent carbon cathode by microwave high-temperature roasting, J. Environ. Manage. 302 (2022) 114028.[LinkOut] [17] T.T. Lu, J.Q. Wang, R.B. Li, H.L. Zhao, M.Z. Xie, F.Q. Liu, Numerical investigation on effective thermal conductivity and heat transfer characteristics in a furnace for treating spent cathode carbon blocks, JOM 72 (5) (2020) 1971-1978.[LinkOut] [18] D. Chen, H.B. Feng, J.H. Li, Graphene oxide: preparation, functionalization, and electrochemical applications, Chem. Rev. 112 (11) (2012) 6027-6053.[PubMed] [19] R.F. Service, Carbon sheets an atom thick give rise to graphene dreams, Science 324 (5929) (2009) 875-877.[PubMed] [20] K. Chintalapudi, R.M. Rao Pannem, Strength properties of graphene oxide cement composites, Mater. Today Proc. 45 (2021) 3971-3975.[LinkOut] [21] S. Zhou, A. Bongiorno, Origin of the chemical and kinetic stability of graphene oxide, Sci. Rep. 3 (2013) 2484.[PubMed] [22] H. Yu, Y. He, G.Q. Xiao, Y. Fan, J. Ma, Y.X. Gao, R.T. Hou, X.Y. Yin, Y.Q. Wang, X. Mei, The roles of oxygen-containing functional groups in modulating water purification performance of graphene oxide-based membrane, Chem. Eng. J. 389 (2020) 124375.[LinkOut] [23] W.C. Song, X.X. Wang, Q. Wang, D.D. Shao, X.K. Wang, Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides, Phys. Chem. Chem. Phys. 17 (1) (2015) 398-406.[PubMed] [24] S.T. Yang, Y.L. Chang, H.F. Wang, G.B. Liu, S. Chen, Y.W. Wang, Y.F. Liu, A.N. Cao, Folding/aggregation of graphene oxide and its application in Cu2+ removal, J. Colloid Interface Sci. 351 (1) (2010) 122-127.[PubMed] [25] F.H. Wei, Q.H. Ren, H. Zhang, L.L. Yang, H.L. Chen, Z. Liang, D. Chen, Removal of tetracycline hydrochloride from wastewater by Zr/Fe-MOFs/GO composites, RSC Adv. 11 (17) (2021) 9977-9984.[PubMed] [26] A.F. Betancur, N. Ornelas-Soto, A.M. Garay-Tapia, F.R. Pérez, Á. Salazar, A.G. García, A general strategy for direct synthesis of reduced graphene oxide by chemical exfoliation of graphite, Mater. Chem. Phys. 218 (2018) 51-61.[LinkOut] [27] W.S. Hummers Jr, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80 (6) (1958) 1339.[LinkOut] [28] K.O. Olumurewa, B. Olofinjana, O. Fasakin, M.A. Eleruja, E.O.B. Ajayi, Characterization of high yield graphene oxide synthesized by simplified hummers method, Graphene 6 (4) (2017) 85-98.[LinkOut] [29] M.S. Xu, D. Fujita, J.H. Gao, N. Hanagata, Auger electron spectroscopy: a rational method for determining thickness of graphene films, ACS Nano 4 (5) (2010) 2937-2945.[PubMed] [30] G.J. Zhang, F.Y. Tang, X. Wang, L.Q. Wang, Y.N. Liu, Atomically dispersed co-S-N active sites anchored on hierarchically porous carbon for efficient catalytic hydrogenation of nitro compounds, ACS Catal. (2022) 5786-5794.[LinkOut] [31] L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, I. Bieloshapka, Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods, J. Electron Spectrosc. Relat. Phenom. 195 (2014) 145-154.[LinkOut] [32] Y.Y. Jin, S.P. Ding, P.Y. Li, X.F. Wang, Coordination of thin-film nanofibrous composite dialysis membrane and reduced graphene oxide aerogel adsorbents for elimination of indoxyl sulfate, Chin. J. Chem. Eng. 49 (2022) 111-121.[LinkOut] [33] Y.X. Shi, C. Li, L.M. Shen, N.Z. Bao, Structure-dependent re-dispersibility of graphene oxide powders prepared by fast spray drying, Chin. J. Chem. Eng. 32 (2021) 485-492.[LinkOut] [34] R. Al-Gaashani, A. Najjar, Y. Zakaria, S. Mansour, M.A. Atieh, XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods, Ceram. Int. 45 (11) (2019) 14439-14448.[LinkOut] [35] G.J. Zhang, F.Y. Tang, L.Q. Wang, W.J. Yang, Y.N. Liu, ZIF-67 derived CoSX/NC catalysts for selective reduction of nitro compounds, J. Cent. South Univ. 28 (5) (2021) 1279-1290.[LinkOut] [36] S.M. Clark, K.J. Jeon, J.Y. Chen, C.S. Yoo, Few-layer graphene under high pressure: Raman and X-ray diffraction studies, Solid State Commun. 154 (2013) 15-18.[LinkOut] [37] L.Y. Liu, Z. Liu, H.Y. Peng, X.T. Mu, Q. Zhao, X.J. Ju, W. Wang, R. Xie, L.Y. Chu, Reduced graphene oxide modified melamine sponges filling with paraffin for efficient solar-thermal conversion and heat management, Chin. J. Chem. Eng. 41 (2022) 497-506.[LinkOut] [38] J. Tian, G. Li, W. He, K. Bing Tan, D.H. Sun, J.F. Wei, Q.B. Li, Insight into the dynamic adsorption behavior of graphene oxide multichannel architecture toward contaminants, Chin. J. Chem. Eng. (2022)[LinkOut] [39] Y.Y. Mao, C. Wang, L. Liu, Preparation of graphene oxide/natural rubber composites by latex co-coagulation: relationship between microstructure and reinforcement, Chin. J. Chem. Eng. 28 (4) (2020) 1187-1193.[LinkOut] [40] J. Su, H.F. Lin, Q.P. Wang, Z.M. Xie, Z.L. Chen, Adsorption of phenol from aqueous solutions by organomontmorillonite, Desalination 269 (2011) 163-169.[LinkOut] [41] D. Kavitha, C. Namasivayam, Experimental and kinetic studies on methylene blue adsorption by coir pith carbon, Bioresour. Technol. 98 (1) (2007) 14-21.[PubMed] [42] H. Freundlich, Über Die adsorption in lösungen, Z. Phys. Chem. 57U (1) (1907) 385-470.[LinkOut] [43] I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc. 38 (11) (1916) 2221-2295. [44] S.T. Yang, S. Chen, Y.L. Chang, A.N. Cao, Y.F. Liu, H.F. Wang, Removal of methylene blue from aqueous solution by graphene oxide, J. Colloid Interface Sci. 359 (1) (2011) 24-29.[PubMed] [45] E.N. El Qada, S.J. Allen, G.M. Walker, Adsorption of basic dyes from aqueous solution onto activated carbons, Chem. Eng. J. 135 (3) (2008) 174-184.[LinkOut] [46] O. Gulnaz, A. Kaya, F. Matyar, B. Arikan, Sorption of basic dyes from aqueous solution by activated sludge, J. Hazard. Mater. 108 (3) (2004) 183-188.[PubMed] [47] Y.J. Yao, F.F. Xu, M. Chen, Z.X. Xu, Z.W. Zhu, Adsorption behavior of methylene blue on carbon nanotubes, Bioresour. Technol. 101 (9) (2010) 3040-3046.[PubMed] [48] B.H. Hameed, A.T.M. Din, A.L. Ahmad, Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies, J. Hazard. Mater. 141 (3) (2007) 819-825.[PubMed] [49] A. Gürses, S. Karaca, C. Doğar, R. Bayrak, M. Açikyildiz, M. Yalçin, Determination of adsorptive properties of clay/water system: methylene blue sorption, J. Colloid Interface Sci. 269 (2) (2004) 310-314.[PubMed] |