中国化学工程学报 ›› 2023, Vol. 61 ›› Issue (9): 260-280.DOI: 10.1016/j.cjche.2023.02.028
• Review • 上一篇
Ali Nikkhah1,2, Hasan Nikkhah3, Hadis langari4, Alireza Nouri1, Abdul Wahab Mohammad1,5, Ang Wei Lun1, Ng law Yong6, Rosiah Rohani1, Ebrahim Mahmoudi1
收稿日期:
2022-09-29
修回日期:
2023-02-21
出版日期:
2023-09-28
发布日期:
2023-12-14
通讯作者:
Ebrahim Mahmoudi,E-mail:mahmoudi.ebi@ukm.edu.my
基金资助:
Ali Nikkhah1,2, Hasan Nikkhah3, Hadis langari4, Alireza Nouri1, Abdul Wahab Mohammad1,5, Ang Wei Lun1, Ng law Yong6, Rosiah Rohani1, Ebrahim Mahmoudi1
Received:
2022-09-29
Revised:
2023-02-21
Online:
2023-09-28
Published:
2023-12-14
Contact:
Ebrahim Mahmoudi,E-mail:mahmoudi.ebi@ukm.edu.my
Supported by:
摘要: A new burgeoning family of two-dimensional (2D) transition metal carbides/nitrides, better known as MXenes, have received extensive attention because of their distinct properties, such as metallic conductivity, good hydrophilicity, large surface area, good mechanical stability, and biodegradability. About 40 different MXenes have been synthesized, and dozens more structures and properties have been theoretically predicted. However, the recent progress in MXenes development is not well covered in chronological order based on different applications. This review article focuses on emerging synthesis methods, the properties of MXenes, and mainly the applications of MXenes and MXene-based material family in environmental remediation, a comprehensive review of gaseous and aqueous pollutants treatment.
Ali Nikkhah, Hasan Nikkhah, Hadis langari, Alireza Nouri, Abdul Wahab Mohammad, Ang Wei Lun, Ng law Yong, Rosiah Rohani, Ebrahim Mahmoudi. MXene: From synthesis to environment remediation[J]. 中国化学工程学报, 2023, 61(9): 260-280.
Ali Nikkhah, Hasan Nikkhah, Hadis langari, Alireza Nouri, Abdul Wahab Mohammad, Ang Wei Lun, Ng law Yong, Rosiah Rohani, Ebrahim Mahmoudi. MXene: From synthesis to environment remediation[J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 260-280.
[1] J.Y. Chen, Q. Huang, H.Y. Huang, L.C. Mao, M.Y. Liu, X.Y. Zhang, Y. Wei, Recent progress and advances in the environmental applications of MXene related materials, Nanoscale 12 (6) (2020) 3574–3592. [2] Y.A.J. Al-Hamadani, B.M. Jun, M. Yoon, N. Taheri-Qazvini, S.A. Snyder, M. Jang, J. Heo, Y. Yoon, Applications of MXene-based membranes in water purification: A review, Chemosphere 254 (2020) 126821. [3] Y.B. Sun, Y. Li, Potential environmental applications of MXenes: A critical review, Chemosphere 271 (2021) 129578. [4] R.L. Huang, Q.T. Lin, Q.F. Zhong, X.F. Zhang, X.Q. Wen, H.Y.Luo, Removal of Cd(II) and Pb(II) from aqueous solution by modified attapulgite clay, Arab. J. Chem. 13 (4) (2020) 4994–5008. [5] F. Chen, G. Hableel, E.R. Zhao, J.V. Jokerst, Multifunctional nanomedicine with silica: Role of silica in nanoparticles for theranostic, imaging, and drug monitoring, J. Colloid Interface Sci. 521 (2018) 261–279. [6] N.H. Alias, J. Jaafar, S. Samitsu, A.F. Ismail, M.H.D. Othman, M.A. Rahman, N.H. Othman, N. Yusof, F. Aziz, T.A.T.Mohd, Efficient removal of partially hydrolysed polyacrylamide in polymer-flooding produced water using photocatalytic graphitic carbon nitride nanofibres, Arab. J. Chem. 13 (2) (2020) 4341–4349. [7] E. Mahmoudi, L.Y. Ng, M.M. Ba-Abbad, A.W.Mohammad, Novel nanohybrid polysulfone membrane embedded with silver nanoparticles on graphene oxide nanoplates, Chem. Eng. J. 277 (2015) 1–10. [8] S.K. Hwang, S.M. Kang, M. Rethinasabapathy, C. Roh, Y.S.Huh, MXene: An emerging two-dimensional layered material for removal of radioactive pollutants, Chem. Eng. J. 397 (2020) 125428. [9] C.W. Park, B.H. Kim, H.M. Yang, B.K. Seo, J.K. Moon, K.W. Lee, Removal of cesium ions from clays by cationic surfactant intercalation, Chemosphere 168 (2017) 1068–1074. [10] Fatemeh, Aghabeigi, Immobilization of lipase on the graphene oxides magnetized with NiFe2O4 nanoparticles for biodiesel production from microalgae lipids, Process. Biochem. 126 (2023) 171–185. [11] N.S. Abdullah Sani, W.L. Ang, A.W. Mohammad, A. Nouri, E. Mahmoudi, Sustainable synthesis of graphene sand composite from waste cooking oil for dye removal, Sci. Rep. 13 (2023) 1931. [12] S. Biswas, P.S.Alegaonkar, MXene: Evolutions in chemical synthesis and recent advances in applications, Surfaces 5 (1) (2021) 1–36. [13] Y.J. Zhang, N.N. Zhang, C.C. Ge, First-principles studies of adsorptive remediation of water and air pollutants using two-dimensional MXene materials, Materials (Basel) 11 (11) (2018) 2281. [14] J.K. Im, E.J. Sohn, S. Kim, M. Jang, A. Son, K.D. Zoh, Y. Yoon, Review of MXene-based nanocomposites for photocatalysis, Chemosphere 270 (2021) 129478. [15] H. Rastin, B.Y. Zhang, A. Mazinani, K. Hassan, J.X. Bi, T.T. Tung, D. Losic, 3D bioprinting of cell-laden electroconductive MXene nanocomposite bioinks, Nanoscale 12 (30) (2020) 16069–16080. [16] A. Zamhuri, G.P. Lim, N.L. Ma, K.S. Tee, C.F. Soon, MXene in the lens of biomedical engineering: Synthesis, applications and future outlook, BioMed Eng OnLine 20 (1) (2021) 33. [17] M. Pogorielov, K. Smyrnova, S. Kyrylenko, O. Gogotsi, V. Zahorodna, A. Pogrebnjak, MXenes-a new class of two-dimensional materials: Structure, properties and potential applications, Nanomaterials (Basel) 11 (12) (2021) 3412. [18] X.X. Zhan, C. Si, J. Zhou, Z.M. Sun, MXene and MXene-based composites: Synthesis, properties and environment-related applications, Nanoscale Horiz. 5 (2) (2020) 235–258. [19] P. Ma, D.L. Fang, Y.L. Liu, Y. Shang, Y.M. Shi, H.Y. Yang, MXene-based materials for electrochemical sodium-ion storage, Adv. Sci. 8 (11) (2021) 2003185. [20] K. Hantanasirisakul, Y. Gogotsi, Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes), Adv. Mater. 30 (52) (2018) 1804779. [21] M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y.Gogotsi, Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene), Chem. Mater. 29 (18) (2017) 7633–7644. [22] S.Y. Tan, W.C. Chong, S. Sethupathi, Y.L. Pang, L.C. Sim, E.Mahmoudi, Optimisation of aqueous phase low density polyethylene degradation by graphene oxide-zinc oxide photocatalysts, Chem. Eng. Res. Des. 190 (2023) 550–565. [23] M. Naguib, M.W. Barsoum, Y. Gogotsi, Ten years of progress in the synthesis and development of MXenes, Adv. Mater. 33 (39) (2021) e2103393. [24] K.A. Papadopoulou, A. Chroneos, D. Parfitt, S.R G. Christopoulos, A perspective on MXenes: Their synthesis, properties, and recent applications, J. Appl. Phys. 128 (17) (2020) 170902. [25] R.Y. Fang, C.W. Lu, A.Q. Chen, K. Wang, H. Huang, Y.P. Gan, C. Liang, J. Zhang, X.Y. Tao, Y. Xia, W.K. Zhang, 2 D MXene-based energy storage materials: Interfacial structure design and functionalization, ChemSusChem 13 (6) (2020) 1409–1419. [26] R.M. Ronchi, J. Teodoro Arantes, S.F.Santos, Synthesis, structure, properties and applications of MXenes: Current status and perspectives, Ceram. Int. 45 (15) (2019) 18167–18188. [27] J.X. Nan, X. Guo, J. Xiao, X. Li, W.H. Chen, W.J. Wu, H. Liu, Y. Wang, M.H. Wu, G.X. Wang, Nanoengineering of 2D MXene-based materials for energy storage applications, Small 17 (9) (2021) 1902085. [28] I. Ihsanullah, Potential of MXenes in water desalination: Current status and perspectives, Nano-Micro Lett. 12 (1) (2020) 72. [29] B. Anasori, M.R. Lukatskaya, Y.Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater. 2 (2) (2017) 16098. [30] H. Lin, Y. Chen, J.L. Shi, Insights into 2D MXenes for versatile biomedical applications: Current advances and challenges ahead, Adv. Sci. 5 (10) (2018) 1800518. [31] N.S. Suhalim, N. Kasim, E. Mahmoudi, I.J. Shamsudin, A.W. Mohammad, F. Mohamed Zuki, N.L. Jamari, Rejection mechanism of ionic solute removal by nanofiltration membranes: An overview, Nanomaterials (Basel) 12 (3) (2022) 437. [32] E. Mahmoudi, L.Y. Ng, W.L. Ang, Y.T. Chung, R. Rohani, A.W. Mohammad, Enhancing morphology and separation performance of polyamide 6, 6 membranes by minimal incorporation of silver decorated graphene oxide nanoparticles, Sci. Rep. 9 (1) (2019) 1216. [33] K. Maleski, M.Alhabeb, Top-down MXene synthesis (selective etching). 2D Metal Carbides and Nitrides (MXenes). Cham: Springer International Publishing, 2019: 69–87. [34] C.E. Shuck, Y.Gogotsi, Taking MXenes from the lab to commercial products, Chem. Eng. J. 401 (2020) 125786. [35] X.H. Li, F.T. Ran, F. Yang, J. Long, L. Shao, Advances in MXene films: Synthesis, assembly, and applications, Trans. Tianjin Univ. 27 (3) (2021) 217–247. [36] L. Verger, V. Natu, M. Carey, M.W.Barsoum, MXenes: An introduction of their synthesis, select properties, and applications, Trends Chem. 1 (7) (2019) 656–669. [37] J.F. Wang, H.X. Ma, Y.Y. Liu, Z.M. Xie, Z.M. Fan, MXene-based humidity-responsive actuators: Preparation and properties, ChemPlusChem 86 (3) (2021) 406–417. [38] J.S. Li, C.X. Guo, C.M. Li, Recent advances of two-dimensional (2 D) MXenes and phosphorene for high-performance rechargeable batteries, ChemSusChem 13 (6) (2020) 1047–1070. [39] X.F. Zhao, M. Radovic, M.J.Green, Synthesizing MXene nanosheets by water-free etching, Chem 6 (3) (2020) 544–546. [40] L. Verger, C. Xu, V. Natu, H.M. Cheng, W.C. Ren, M.W.Barsoum, Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides, Curr. Opin. Solid State Mater. Sci. 23 (3) (2019) 149–163. [41] B. Anasori, Y. Gogotsi, 2D Metal Carbides and Nitrides (MXenes) Structure, Properties and Applications Structure, Properties and Applications, Springer, 2019. [42] S. Munir, A. Rasheed, T. Rasheed, I. Ayman, S. Ajmal, A. Rehman, I. Shakir, P.O. Agboola, M.F. Warsi, Exploring the influence of critical parameters for the effective synthesis of high-quality 2D MXene, ACS Omega 5 (41) (2020) 26845–26854. [43] S. Venkateshalu, A.N. Grace, MXenes—a new class of 2D layered materials: Synthesis, properties, applications as supercapacitor electrode and beyond, Appl. Mater. Today 18 (2020) 100509. [44] A. Iqbal, J. Hong, T.Y. Ko, C.M. Koo, Improving oxidation stability of 2D MXenes: Synthesis, storage media, and conditions, Nano Converg. 8 (1) (2021) 9. [45] O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall'Agnese, M. Heon, M.W. Barsoum, Y. Gogotsi, Intercalation and delamination of layered carbides and carbonitrides, Nat. Commun. 4 (2013) 1716. [46] Y. Wei, P. Zhang, R.A. Soomro, Q.Z. Zhu, B. Xu, Advances in the synthesis of 2D MXenes, Adv. Mater. 33 (39) (2021) 2103148. [47] M. Jeon, B.M. Jun, S. Kim, M. Jang, C.M. Park, S.A. Snyder, Y. Yoon, A review on MXene-based nanomaterials as adsorbents in aqueous solution, Chemosphere 261 (2020) 127781. [48] M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance, Nature 516 (7529) (2014) 78–81. [49] C. Roy, S.K. De, P. Banerjee, S. Pradhan, S.Bhattacharyya, Investigating suitable medium for the long-duration storage of Ti2CTx MXene, J. Alloys Compd. 938 (2023) 168471. [50] M. Mičušík, M. Šlouf, A. Stepura, Y. Soyka, E. Ovodok, M. Procházka, M.Omastová, Aging of 2D MXene nanoparticles in air: An XPS and TEM study, Appl. Surf. Sci. 610 (2023) 155351. [51] L. Gao, W. Bao, A.V. Kuklin, S. Mei, H. Zhang, H. Ågren, Hetero-MXenes: Theory, Synthesis, and Emerging Applications, Advanced Materials 33(10) (2021) 1-43. [52] L.J. Yin, Y.T. Li, X.C. Yao, Y.Z. Wang, L. Jia, Q.M. Liu, J.S. Li, Y.L. Li, D.Y. He, MXenes for solar cells, Nano-Micro Lett. 13 (1) (2021) 78. [53] A. Khosla, Sonu, H.T.A. Awan, K. Singh, Gaurav, R. Walvekar, Z.H. Zhao, A. Kaushik, M. Khalid, V. Chaudhary, Emergence of MXene and MXene-polymer hybrid membranes as future- environmental remediation strategies, Adv. Sci. 9 (36) (2022) 2203527. [54] Y. Tang, J.F. Zhu, C.H. Yang, F.Wang, Enhanced capacitive performance based on diverse layered structure of two-dimensional Ti3C2MXene with long etching time, J. Electrochem. Soc. 163 (9) (2016) A1975–A1982. [55] S. Kumar, D. Kang, H. Hong, M.A. Rehman, Y.J. Lee, N. Lee, Y. Seo, Effect of Ti3C2Tx MXenes etched at elevated temperatures using concentrated acid on binder-free supercapacitors, RSC Adv. 10 (68) (2020) 41837–41845. [56] Y.F. Wang, Y.H. Xu, M.L. Hu, H. Ling, X.Zhu, MXenes: Focus on optical and electronic properties and corresponding applications, Nanophotonics 9 (7) (2020) 1601–1620. [57] Y.J. Zhang, L. Wang, N.N. Zhang, Z.J. Zhou, Adsorptive environmental applications of MXene nanomaterials: A review, RSC Adv. 8 (36) (2018) 19895–19905. [58] Z. Zhang, F. Zhang, H.C. Wang, C. Ho Chan, W. Lu, J.Y. Dai, Substrate orientation-induced epitaxial growth of face centered cubic Mo2C superconductive thin film, J. Mater. Chem. C 5 (41) (2017) 10822–10827. [59] R. Pachauri, Climate change 2007. Synthesis report. Contribution of Working Groups I, II and III to the fourth assessment report, 2008. [60] Ã. Morales-GarcÃa, A. FernÃindez-FernÃindez, F. Viñes, F. Illas, CO2 abatement using two-dimensional MXene carbides, J. Mater. Chem. A 6 (8) (2018) 3381–3385. [61] Z.L. Guo, Y. Li, B.S. Sa, Y. Fang, J. Lin, Y. Huang, C.C. Tang, J. Zhou, N.H. Miao, Z.M.Sun, M2C-type MXenes: Promising catalysts for CO2 capture and reduction, Appl. Surf. Sci. 521 (2020) 146436. [62] B.X. Wang, A.G. Zhou, F.F. Liu, J.L. Cao, L.B. Wang, Q.K. Hu, Carbon dioxide adsorption of two-dimensional carbide MXenes, J Adv Ceram 7 (3) (2018) 237–245. [63] R. Morales-Salvador, J.D. Gouveia, Á. Morales-García, F. Viñes, J.R.B. Gomes, F. Illas, Carbon capture and usage by MXenes, ACS Catal. 11 (17) (2021) 11248–11255. [64] Yu, Chen, CO2 capture and conversion to value-added products promoted by MXene-based materials, Green Energy Environ. 7 (3) (2022) 394–410. [65] I. Persson, J. Halim, H. Lind, T.W. Hansen, J.B. Wagner, L.Å. Näslund, V. Darakchieva, J. Palisaitis, J. Rosen, P.O.Å. Persson, 2D transition metal carbides (MXenes) for carbon capture, Adv. Mater. 31 (2) (2019) 1805472. [66] A.A. Shamsabadi, A.P. Isfahani, S.K. Salestan, A. Rahimpour, B. Ghalei, E. Sivaniah, M. Soroush, Pushing rubbery polymer membranes to be economic for CO2 separation: Embedment with Ti3C2Tx MXene nanosheets, ACS Appl. Mater. Interfaces 12 (3) (2020) 3984–3992. [67] J. Low, L.Y. Zhang, T. Tong, B.J. Shen, J.G.Yu, TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity, J. Catal. 361 (2018) 255–266. [68] G. Bharath, K. Rambabu, A. Hai, I. Othman, N. Ponpandian, F. Banat, P.Loke Show, Hybrid Pd50-Ru50/MXene (Ti3C2Tx) nanocatalyst for effective hydrogenation of CO2 to methanol toward climate change control, Chem. Eng. J. 414 (2021) 128869. [69] N. Li, X.Z. Chen, W.J. Ong, D.R. MacFarlane, X.J. Zhao, A.K. Cheetham, C.H. Sun, Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes), ACS Nano 11 (11) (2017) 10825–10833. [70] Ã. Morales-GarcÃa, M. Mayans-Llorach, F. Viñes, F. Illas, Thickness biased capture of CO2 on carbide MXenes, Phys. Chem. Chem. Phys. 21 (41) (2019) 23136–23142. [71] Y. Xiao, W.B. Zhang, High throughput screening of M3C2 MXenes for efficient CO2 reduction conversion into hydrocarbon fuels, Nanoscale 12 (14) (2020) 7660–7673. [72] A.D. Handoko, K.H. Khoo, T. Leong Tan, H.M. Jin, Z.W. Seh, Establishing new scaling relations on two-dimensional MXenes for CO2 electroreduction, J. Mater. Chem. A 6 (44) (2018) 21885–21890. [73] K. Kannan, M.H. Sliem, A.M. Abdullah, K.K. Sadasivuni, B.Kumar, Fabrication of ZnO-Fe-MXene based nanocomposites for efficient CO2 reduction, Catalysts 10 (5) (2020) 549. [74] A.Z. Pan, X.Q. Ma, S.Y. Huang, Y.S. Wu, M.J. Jia, Y.M. Shi, Y. Liu, P.H. Wangyang, L. He, Y. Liu, CsPbBr3 perovskite nanocrystal grown on MXene nanosheets for enhanced photoelectric detection and photocatalytic CO2 reduction, J. Phys. Chem. Lett. 10 (21) (2019) 6590–6597. [75] M.H. Ye, X. Wang, E.Z. Liu, J.H. Ye, D.F. Wang, Boosting the photocatalytic activity of P25 for carbon dioxide reduction by using a surface-alkalinized titanium carbide MXene as cocatalyst, ChemSusChem 11 (10) (2018) 1606–1611. [76] J.Y. Shen, J. Shen, W.J. Zhang, X.H. Yu, H. Tang, M.Y. Zhang, Zulfiqar, Q.Q.Liu, Built-in electric field induced CeO2/Ti3C2-MXene Schottky-junction for coupled photocatalytic tetracycline degradation and CO2 reduction, Ceram. Int. 45 (18) (2019) 24146–24153. [77] Q.J. Tang, Z.X. Sun, S. Deng, H.Q. Wang, Z.B. Wu, Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance, J. Colloid Interface Sci. 564 (2020) 406–417. [78] A.D. Handoko, H. Chen, Y. Lum, Q. Zhang, B. Anasori, Z.W. Seh, Two-dimensional titanium and molybdenum carbide MXenes as electrocatalysts for CO2 reduction, iScience 23 (6) (2020) 101181. [79] J.H. Shen, Z.Y. Wu, C.R. Li, C.C. Zhang, A. Genest, G. Rupprechter, L.He, Emerging applications of MXene materials in CO2 photocatalysis, FlatChem 28 (2021) 100252. [80] Y.L. Sun, X. Meng, Y. Dall’Agnese, C. Dall’Agnese, S.N. Duan, Y. Gao, G. Chen, X.F. Wang, 2D MXenes as Co-catalysts in photocatalysis: Synthetic methods, Nano-Micro Lett. 11 (1) (2019) 79. [81] C. Yang, Q.Y. Tan, Q. Li, J. Zhou, J.J. Fan, B. Li, J. Sun, K.L.Lv, 2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst: Dual effects of urea, Appl. Catal. B Environ. 268 (2020) 118738. [82] Y. Zhao, M.D. Que, J. Chen, C.L. Yang, MXenes as co-catalysts for the solar-driven photocatalytic reduction of CO2, J. Mater. Chem. C 8 (46) (2020) 16258–16281. [83] W.Y. Chen, B. Han, Y.L. Xie, S.J. Liang, H. Deng, Z.Lin, Ultrathin Co-Co LDHs nanosheets assembled vertically on MXene: 3D nanoarrays for boosted visible-light-driven CO2 reduction, Chem. Eng. J. 391 (2020) 123519. [84] L. Cheng, X. Li, H.W. Zhang, Q.J. Xiang, Two-dimensional transition metal MXene-based photocatalysts for solar fuel generation, J. Phys. Chem. Lett. 10 (12) (2019) 3488–3494. [85] K.N. Li, S.S. Zhang, Y.H. Li, J.J. Fan, K.L.Lv, MXenes as noble-metal-alternative co-catalysts in photocatalysis, Chin. J. Catal. 42 (1) (2021) 3–14. [86] S.W. Cao, B.J. Shen, T. Tong, J.W. Fu, J.G. Yu, 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction, Adv. Funct. Mater. 28 (21) (2018) 1800136. [87] X. Zhang, Z.H. Zhang, J.L. Li, X.D. Zhao, D.H. Wu, Z. Zhou, Ti2CO2 MXene: A highly active and selective photocatalyst for CO2 reduction, J. Mater. Chem. A 5 (25) (2017) 12899–12903. [88] Z.P. Zeng, Y.B. Yan, J. Chen, P. Zan, Q.H. Tian, P. Chen, Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by MXene quantum dots, Adv. Funct. Mater. 29 (2) (2019) 1806500. [89] Z.Y. Wu, C.R. Li, Z. Li, K. Feng, M.J. Cai, D.K. Zhang, S.H. Wang, M.Y. Chu, C.C. Zhang, J.H. Shen, Z. Huang, Y.L. Xiao, G.A. Ozin, X.H. Zhang, L. He, Niobium and titanium carbides (MXenes) as superior photothermal supports for CO2 photocatalysis, ACS Nano 15 (3) (2021) 5696–5705. [90] Q. Zhao, C. Zhang, R.M. Hu, Z.G. Du, J.N. Gu, Y. Cui, X. Chen, W.J. Xu, Z.J. Cheng, S.M. Li, B. Li, Y.F. Liu, W.H. Chen, C.T. Liu, J.X. Shang, L. Song, S.B. Yang, Selective etching quaternary MAX phase toward single atom copper immobilized MXene (Ti3C2Clx) for efficient CO2 electroreduction to methanol, ACS Nano 15 (3) (2021) 4927–4936. [91] Guimei, Huang, Ti3C2 MXene-modified Bi2WO6 nanoplates for efficient photodegradation of volatile organic compounds, Appl. Surf. Sci. 503 (2020) 144183. [92] J.H. Zhou, D.D. Li, W.N. Zhao, B.H. Jing, Z.M. Ao, T.C. An, First-principles evaluation of volatile organic compounds degradation in Z-scheme photocatalytic systems: MXene and graphitic-CN heterostructures, ACS Appl. Mater. Interfaces 13 (20) (2021) 23843–23852. [93] L.L. Zhou, Z.Z. Shen, S.B. Wang, J.X. Gao, L.L. Tang, J. Li, Y.M. Dong, Z.Y. Wang, J.Z.Lyu, Construction of quantum-scale catalytic regions on anatase TiO2 nanoparticles by loading TiO2 quantum dots for the photocatalytic degradation of VOCs, Ceram. Int. 47 (15) (2021) 21090–21098. [94] Y.J. Zhang, Z.J. Zhou, J.H. Lan, P.H.Zhang, Prediction of Ti3C2O2 MXene as an effective capturer of formaldehyde, Appl. Surf. Sci. 469 (2019) 770–774. [95] R.J. Xie, J. Ji, H.B. Huang, D.X. Lei, R.M. Fang, Y.J. Shu, Y.J. Zhan, K.H. Guo, D.Y.C.Leung, Heterogeneous activation of peroxymonosulfate over monodispersed Co3O4/activated carbon for efficient degradation of gaseous toluene, Chem. Eng. J. 341 (2018) 383–391. [96] W.J. Yuan, K. Yang, H.F. Peng, F. Li, F.X. Yin, A flexible VOCs sensor based on a 3D Mxene framework with a high sensing performance, J. Mater. Chem. A 6 (37) (2018) 18116–18124. [97] W.Z. Guo, S.G. Surya, V. Babar, F.W. Ming, S. Sharma, H.N. Alshareef, U. Schwingenschlögl, K.N. Salama, Selective toluene detection with Mo2CTx MXene at room temperature, ACS Appl. Mater. Interfaces 12 (51) (2020) 57218–57227. [98] W.Y. Chen, X. Jiang, S.N. Lai, D. Peroulis, L. Stanciu, Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds, Nat. Commun. 11 (1) (2020) 1302. [99] A. Hermawan, B. Zhang, A. Taufik, Y. Asakura, T. Hasegawa, J.F. Zhu, P. Shi, S.Yin, CuO nanoparticles/Ti3C2Tx MXene hybrid nanocomposites for detection of toluene gas, ACS Appl. Nano Mater. 3 (5) (2020) 4755–4766. [100] S.B. Sun, M.W. Wang, X.T. Chang, Y.C. Jiang, D.Z. Zhang, D.S. Wang, Y.L. Zhang, Y.H.Lei, W18O49/Ti3C2Tx Mxene nanocomposites for highly sensitive acetone gas sensor with low detection limit, Sens. Actuat. B Chem. 304 (2020) 127274. [101] Y. Zhang, Y.P. Huang, M.C. Li, S. Zhang, W.M. Zhou, C.T. Mei, M.Z.Pan, Bioinspired, stable adhesive Ti3C2Tx MXene-based coatings towards fire warning, smoke suppression and VOCs removal smart wood, Chem. Eng. J. 452 (2023) 139360. [102] Y.W. Wang, X.S. Hu, H.R. Song, Y. Cai, Z. Li, D.Y. Zu, P.X. Zhang, D.T. Chong, N.B. Gao, Y.M. Shen, C.P.Li, Oxygen vacancies in actiniae-like Nb2O5/Nb2C MXene heterojunction boosting visible light photocatalytic NO removal, Appl. Catal. B Environ. 299 (2021) 120677. [103] H.M. Wang, R. Zhao, H.X. Hu, X.W. Fan, D.J. Zhang, D. Wang, 0D/2D heterojunctions of Ti3C2 MXene QDs/SiC as an efficient and robust photocatalyst for boosting the visible photocatalytic NO pollutant removal ability, ACS Appl. Mater. Interfaces 12 (36) (2020) 40176–40185. [104] J.L. Li, Q. Zhang, Y.Z. Zou, Y.H. Cao, W. Cui, F. Dong, Y. Zhou, Ti3C2 MXene modified g-C3N4 with enhanced visible-light photocatalytic performance for NO purification, J. Colloid Interface Sci. 575 (2020) 443–451. [105] A. Hermawan, T. Hasegawa, Y. Asakura, S.Yin, Enhanced visible-light-induced photocatalytic NOx degradation over (Ti, C)-BiOBr/Ti3C2Tx MXene nanocomposites: Role of Ti and C doping, Sep. Purif. Technol. 270 (2021) 118815. [106] X.S. Hu, Y.W. Wang, Z. Ling, H.R. Song, Y. Cai, Z. Li, D.Y. Zu, C.P.Li, Ternary g-C3N4/TiO2/Ti3C2 MXene S-scheme heterojunction photocatalysts for NOx removal under visible light, Appl. Surf. Sci. 556 (2021) 149817. [107] Y. Ibrahim, A. Kassab, K. Eid, A.M. Abdullah, K.I. Ozoemena, A. Elzatahry, Unveiling fabrication and environmental remediation of MXene-based nanoarchitectures in toxic metals removal from wastewater: Strategy and mechanism, Nanomaterials (Basel) 10 (5) (2020) 885. [108] J.X. Guo, Q.M. Peng, H. Fu, G.D. Zou, Q.R.Zhang, Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXene by first-principles calculations, J. Phys. Chem. C 119 (36) (2015) 20923–20930. [109] Muhammad, Bilal, What makes MXenes emergent materials for the adsorption of heavy metals from water? A critical review, J. Water Process. Eng. 49 (2022) 103010. [110] L. Ding, Y.Y. Wei, Y.J. Wang, H.B. Chen, J. Caro, H.H. Wang, A two-dimensional lamellar membrane: MXene nanosheet stacks, Angewandte Chemie Int. Ed. 56 (7) (2017) 1825–1829. [111] W.Z. Bao, L. Liu, C.Y. Wang, S. Choi, D. Wang, G.X. Wang, Solar cells: Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries (adv. energy mater. 13/2018), Adv. Energy Mater. 8 (13) (2018) 1870060. [112] X. Yan, M.M. Song, M. Zhou, C.L. Ding, Z.R. Wang, Y.Y. Wang, W.C. Yang, Z.H. Yang, Q. Liao, Y. Shi, Response of Cupriavidus basilensis B-8 to CuO nanoparticles enhances Cr(VI) reduction, Sci. Total Environ. 688 (2019) 46–55. [113] A.Q. Kong, Y.W. Sun, M. Peng, H.Z. Gu, Y. Fu, J.L. Zhang, W.Li, Amino-functionalized MXenes for efficient removal of Cr(VI), Colloids Surf. A Physicochem. Eng. Aspects 617 (2021) 126388. [114] Y.L. Feng, H. Wang, J.H. Xu, X.S. Du, X. Cheng, Z.L. Du, H.B. Wang, Fabrication of MXene/PEI functionalized sodium alginate aerogel and its excellent adsorption behavior for Cr(VI) and Congo Red from aqueous solution, J. Hazard. Mater. 416 (2021) 125777. [115] L.L. He, D.S. Huang, Z.X. He, X.J. Yang, G.Z. Yue, J. Zhu, D. Astruc, P.X. Zhao, Nanoscale zero-valent iron intercalated 2D titanium carbides for removal of Cr(VI) in aqueous solution and the mechanistic aspect, J. Hazard. Mater. 388 (2020) 121761. [116] M. Arbabi, S. Hemati, M. Amiri, Removal of lead ions from industrial wastewater: A review of removal methods, 2(2)(2015) 105-109. [117] R.S. Dongre, Lead: Toxicological Profile, Pollution Aspects and Remedial Solutions. Lead Chemistry. InTech-OpenAccessPublisher, Rijeka,Croatia, 2020 . [118] R.S.Dongre, Rationally Fabricated Nanomaterials for Desalination and Water Purification. Novel Nanomaterials - Synthesis and Applications. InTech-OpenAccessPublisher, Rijeka,Croatia, 2018: . [119] B.M. Jun, N. Her, C.M. Park, Y. Yoon, Effective removal of Pb(ii) from synthetic wastewater using Ti3C2Tx MXene, Environ. Sci.: Water Res. Technol. 6 (1) (2020) 173–180. [120] Y.J. Dong, D.S. Sang, C.D. He, X.F. Sheng, L.W. Lei, Mxene/alginate composites for lead and copper ion removal from aqueous solutions, RSC Adv. 9 (50) (2019) 29015–29022. [121] G.L. Zhang, T.C. Wang, Z.H. Xu, M.M. Liu, C. Shen, Q. Meng, Synthesis of amino-functionalized Ti3C2Tx MXene by alkalization-grafting modification for efficient lead adsorption, Chem. Commun. 56 (76) (2020) 11283–11286. [122] H. Gomaa, M.A. Shenashen, A. Elbaz, H. Yamaguchi, M. Abdelmottaleb, S.A. El-Safty, Mesoscopic engineering materials for visual detection and selective removal of copper ions from drinking and waste water sources, J. Hazard. Mater. 406 (2021) 124314. [123] S.A. El-Safty, M. Khairy, M.Ismael, Visual detection and revisable supermicrostructure sensor systems of Cu(II) analytes, Sens. Actuat. B Chem. 166-167 (2012) 253–263. [124] C.X. Yu, Z.C. Shao, L.L. Liu, H.W.Hou, Efficient and selective removal of copper(II) from aqueous solution by a highly stable hydrogen-bonded metal-organic framework, Cryst. Growth Des. 18 (5) (2018) 3082–3088. [125] A. Shahzad, K. Rasool, W. Miran, M. Nawaz, J. Jang, K.A. Mahmoud, D.S.Lee, Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water, ACS Sustainable Chem. Eng. 5 (12) (2017) 11481–11488. [126] D.F. Gan, Q. Huang, J.B. Dou, H.Y. Huang, J.Y. Chen, M.Y. Liu, Y.Q. Wen, Z.Y. Yang, X.Y. Zhang, Y.Wei, Bioinspired functionalization of MXenes (Ti3C2Tx) with amino acids for efficient removal of heavy metal ions, Appl. Surf. Sci. 504 (2020) 144603. [127] N. Sun, X. Wen, C.J. Yan, Adsorption of mercury ions from wastewater aqueous solution by amide functionalized cellulose from sugarcane bagasse, Int. J. Biol. Macromol. 108 (2018) 1199–1206. [128] Q.R. Wu, S.X. Wang, M. Yang, H.T. Su, G.L. Li, Y. Tang, J.M. Hao, Mercury flows in large-scale gold production and implications for Hg pollution control, J. Environ. Sci. (China) 68 (2018) 91–99. [129] L. Wang, D. Hou, Y. Cao, Y.S. Ok, F.M.G. Tack, J. Rinklebe, D. O'Connor, Remediation of mercury contaminated soil, water, and air: A review of emerging materials and innovative technologies, Environ. Int. 134 (2020) 105281. [130] B. Fernandes Azevedo, L. Barros Furieri, F.M. Peçanha, G.A. Wiggers, P. Frizera Vassallo, M. Ronacher Simões, J. Fiorim, P. Rossi de Batista, M. Fioresi, L. Rossoni, I. Stefanon, M.J. Alonso, M. Salaices, D. Valentim Vassallo, Toxic effects of mercury on the cardiovascular and central nervous systems, J. Biomed. Biotechnol. 2012 (2012) 949048. [131] A. Shahzad, K. Rasool, W. Miran, M. Nawaz, J. Jang, K.A. Mahmoud, D.S. Lee, Mercuric ion capturing by recoverable titanium carbide magnetic nanocomposite, J. Hazard. Mater. 344 (2018) 811–818. [132] A. Shahzad, M. Nawaz, M. Moztahida, J. Jang, K. Tahir, J. Kim, Y. Lim, V.S. Vassiliadis, S.H. Woo, D.S.Lee, Ti3C2Tx MXene core-shell spheres for ultrahigh removal of mercuric ions, Chem. Eng. J. 368 (2019) 400–408. [133] A. Shahzad, K. Rasool, J. Iqbal, J. Jang, Y. Lim, B. Kim, J.M. Oh, D.S. Lee, MXsorption of mercury: Exceptional reductive behavior of titanium carbide/carbonitride MXenes, Environ. Res. 205 (2022) 112532. [134] A. Ghaemi, M. Torab-Mostaedi, M. Ghannadi-Maragheh, Characterizations of strontium(II) and Barium(II) adsorption from aqueous solutions using dolomite powder, J. Hazard. Mater. 190 (1–3) (2011) 916–921. [135] A.R. Kaveeshwar, P.S. Kumar, E.D. Revellame, D.D. Gang, M.E. Zappi, R.Subramaniam, Adsorption properties and mechanism of Barium (II) and strontium (II) removal from fracking wastewater using pecan shell based activated carbon, J. Clean. Prod. 193 (2018) 1–13. [136] B.M. Jun, C.M. Park, J. Heo, Y. Yoon, Adsorption of Ba2+ and Sr2+ on Ti3C2Tx MXene in model fracking wastewater, J. Environ. Manage. 256 (2020) 109940. [137] G.D. Zou, J.X. Guo, Q.M. Peng, A.G. Zhou, Q.R. Zhang, B.Z. Liu, Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation, J. Mater. Chem. A 4 (2) (2016) 489–499. [138] L.F. Jin, L.Y. Chai, W.C. Yang, H.Y. Wang, L.Y. Zhang, Two-dimensional titanium carbides (Ti3C2Tx) functionalized by poly(m-phenylenediamine) for efficient adsorption and reduction of hexavalent chromium, Int. J. Environ. Res. Public Health 17 (1) (2019) 167. [139] X. Zeng, Y.C. Wang, X.Y. He, C.C. Liu, X. Wang, X.P.Wang, Enhanced removal of Cr(VI) by reductive sorption with surface-modified Ti3C2Tx MXene nanocomposites, J. Environ. Chem. Eng. 9 (5) (2021) 106203. [140] Y.Z. Lv, K.K. Chang, H. Wu, P. Fang, C.G. Chen, Q.Liao, Highly efficient scavenging of Cr(VI) by two-dimensional titanium carbide nanosheets: Kinetics, isotherms and thermodynamics analysis, Water Sci. Technol. 84 (9) (2021) 2446–2456. [141] G. Yang, X. Hu, J. Liang, Q. Huang, J.B. Dou, J.W. Tian, F.J. Deng, M.Y. Liu, X.Y. Zhang, Y. Wei, Surface functionalization of MXene with chitosan through in situ formation of polyimidazoles and its adsorption properties, J. Hazard. Mater. 419 (2021) 126220. [142] Q.M. Peng, J.X. Guo, Q.R. Zhang, J.Y. Xiang, B.Z. Liu, A.G. Zhou, R.P. Liu, Y.J. Tian, Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide, J. Am. Chem. Soc. 136 (11) (2014) 4113–4116. [143] P.C. Gu, J.L. Xing, T. Wen, R. Zhang, J. Wang, G.X. Zhao, T. Hayat, Y.J. Ai, Z. Lin, X.K. Wang, Experimental and theoretical calculation investigation on efficient Pb(ii) adsorption on etched Ti3AlC2 nanofibers and nanosheets, Environ. Sci.: Nano 5 (4) (2018) 946–955. [144] P.C. Gu, S. Zhang, C.L. Zhang, X.X. Wang, A. Khan, T. Wen, B.W. Hu, A. Alsaedi, T. Hayat, X.K. Wang, Two-dimensional MAX-derived titanate nanostructures for efficient removal of Pb(ii), Dalton Trans. 48 (6) (2019) 2100–2107. [145] S.H. Wang, Y.L. Liu, Q.F. Lü, H.P.Zhuang, Facile preparation of biosurfactant-functionalized Ti2CTX MXene nanosheets with an enhanced adsorption performance for Pb(II) ions, J. Mol. Liq. 297 (2020) 111810. [146] Y.C. Du, B. Yu, L.Q. Wei, Y.L. Wang, X.M. Zhang, S.F. Ye, Efficient removal of Pb(II) by Ti3C2Tx powder modified with a silane coupling agent, J Mater Sci 54 (20) (2019) 13283–13297. [147] Asif, Shahzad, Unique selectivity and rapid uptake of molybdenum-disulfide-functionalized MXene nanocomposite for mercury adsorption, Environ. Res. 182 (2020) 109005. [148] X. Hu, C. Chen, D. Zhang, Y. Xue, Kinetics, isotherm and chemical speciation analysis of Hg(Ⅱ) adsorption over oxygen-containing MXene adsorbent, Chemosphere 278 (2021) 130206. [149] A. Latif, S. Noor, Q.M. Sharif, M. Najeebullah, Different techniques recently used for the treatment of textile dyeing effluents: A review, J. Chem. Soc. Pak. 32 (1) (2010) 115–124. [150] S.M. Ibrahim, A.A. Badawy, H.A. Essawy, Improvement of dyes removal from aqueous solution by Nanosized cobalt ferrite treated with humic acid during coprecipitation, J Nanostruct Chem 9 (4) (2019) 281–298. [151] M.W. Xu, C. Huang, J. Lu, Z.H. Wu, X.X. Zhu, H. Li, L.T. Xiao, Z.F. Luo, Optimizing adsorption of 17α-ethinylestradiol from water by magnetic MXene using response surface methodology and adsorption kinetics, isotherm, and thermodynamics studies, Molecules 26 (11) (2021) 3150. [152] S.Y. Zhang, S.Y. Liao, F.Y. Qi, R.T. Liu, T.H. Xiao, J.Q. Hu, K.X. Li, R.B. Wang, Y.G. Min, Direct deposition of two-dimensional MXene nanosheets on commercially available filter for fast and efficient dye removal, J. Hazard. Mater. 384 (2020) 121367. [153] N. My Tran, Q. Thanh Hoai Ta, A. Sreedhar, J.S.Noh, Ti3C2Tx MXene playing as a strong methylene blue adsorbent in wastewater, Appl. Surf. Sci. 537 (2021) 148006. [154] W. Zheng, P.G. Zhang, W.B. Tian, X. Qin, Y.M. Zhang, Z.M.Sun, Alkali treated Ti3C2Tx MXenes and their dye adsorption performance, Mater. Chem. Phys. 206 (2018) 270–276. [155] Y. Lei, Y. Cui, Q. Huang, J.B. Dou, D.F. Gan, F.J. Deng, M.Y. Liu, X.C. Li, X.Y. Zhang, Y.Wei, Facile preparation of sulfonic groups functionalized Mxenes for efficient removal of methylene blue, Ceram. Int. 45 (14) (2019) 17653–17661. [156] C.X. Yao, W.Q. Zhang, L.J. Xu, M.M. Cheng, Y. Su, J. Xue, J.L. Liu, S.F.Hou, A facile synthesis of porous MXene-based freestanding film and its spectacular electrosorption performance for organic dyes, Sep. Purif. Technol. 263 (2021) 118365. [157] Y.F. Yan, H. Han, Y.J. Dai, H. Zhu, W.H. Liu, X. Tang, W. Gan, H.Li, Nb2CTx MXene nanosheets for dye adsorption, ACS Appl. Nano Mater. 4 (11) (2021) 11763–11769. [158] Z. Othman, A. Sinopoli, H.R. MacKey, K.A. Mahmoud, Efficient photocatalytic degradation of organic dyes by AgNPs/TiO2/Ti3C2T x MXene composites under UV and solar light, ACS Omega 6 (49) (2021) 33325–33338. [159] Y.M. Hunge, A.A. Yadav, S. Khan, K. Takagi, N. Suzuki, K. Teshima, C. Terashima, A. Fujishima, Photocatalytic degradation of bisphenol A using titanium dioxide@nanodiamond composites under UV light illumination, J. Colloid Interface Sci. 582 (Pt B) (2021) 1058–1066. [160] A. Shahzad, K. Rasool, M. Nawaz, W. Miran, J. Jang, M. Moztahida, K.A. Mahmoud, D.S.Lee, Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine, Chem. Eng. J. 349 (2018) 748–755. [161] C. Cui, R.H. Guo, H.Y. Xiao, E.H. Ren, Q.S. Song, C. Xiang, X.X. Lai, J.W. Lan, S.X.Jiang, Bi2WO6/Nb2CTx MXene hybrid nanosheets with enhanced visible-light-driven photocatalytic activity for organic pollutants degradation, Appl. Surf. Sci. 505 (2020) 144595. [162] S. Kim, F. Gholamirad, M. Yu, C.M. Park, A. Jang, M. Jang, N. Taheri-Qazvini, Y.Yoon, Enhanced adsorption performance for selected pharmaceutical compounds by sonicated Ti3C2Tx MXene, Chem. Eng. J. 406 (2021) 126789. [163] C. Peng, X.F. Yang, Y.H. Li, H. Yu, H.J. Wang, F. Peng, Hybrids of two-dimensional Ti3C2 and TiO2 exposing{001}facets toward enhanced photocatalytic activity, ACS Appl. Mater. Interfaces 8 (9) (2016) 6051–6060. [164] A.A. Ghani, A. Shahzad, M. Moztahida, K. Tahir, H. Jeon, B. Kim, D.S.Lee, Adsorption and electrochemical regeneration of intercalated Ti3C2Tx MXene for the removal of ciprofloxacin from wastewater, Chem. Eng. J. 421 (2021) 127780. [165] Q.S. Huang, Y.T. Liu, T. Cai, X.N.Xia, Simultaneous removal of heavy metal ions and organic pollutant by BiOBr/Ti3C2 nanocomposite, J. Photochem. Photobiol. A Chem. 375 (2019) 201–208. [166] S.S. Luo, R. Wang, J.J. Yin, T.F. Jiao, K.Y. Chen, G.D. Zou, L. Zhang, J.X. Zhou, L.X. Zhang, Q.M. Peng, Preparation and dye degradation performances of self-assembled MXene-Co3O4 nanocomposites synthesized via solvothermal approach, ACS Omega 4 (2) (2019) 3946–3953. [167] V. Thirumal, R. Yuvakkumar, P.S. Kumar, G. Ravi, S.P. Keerthana, D. Velauthapillai, Facile single-step synthesis of MXene@CNTs hybrid nanocomposite by CVD method to remove hazardous pollutants, Chemosphere 286 (Pt 2) (2022) 131733. [168] Q.Q. Lin, G.Y. Zeng, G.L. Yan, J.Q. Luo, X.J. Cheng, Z.Y. Zhao, H.Li, Self-cleaning photocatalytic MXene composite membrane for synergistically enhanced water treatment: Oil/water separation and dyes removal, Chem. Eng. J. 427 (2022) 131668. [169] Y. Wang, Y. Nian, A.N. Biswas, W. Li, Y. Han, J.G. Chen, Challenges and opportunities in utilizing MXenes of carbides and nitrides as electrocatalysts, Adv. Energy Mater. 11 (3) (2021) 2002967. [170] S. Panda, K. Deshmukh, S.K. Khadheer Pasha, J. Theerthagiri, S. Manickam, M.Y.Choi, MXene based emerging materials for supercapacitor applications: Recent advances, challenges, and future perspectives, Coord. Chem. Rev. 462 (2022) 214518. [171] M. Khatami, S. Iravani, MXenes and MXene-based materials for the removal of water pollutants: Challenges and opportunities, Comments Inorg. Chem. 41 (4) (2021) 213–248. [172] Y. Wu, X.M. Li, H. Zhao, F.B. Yao, J. Cao, Z. Chen, X.D. Huang, D.B. Wang, Q.Yang, Recent advances in transition metal carbides and nitrides (MXenes): Characteristics, environmental remediation and challenges, Chem. Eng. J. 418 (2021) 129296. [173] I. Ihsanullah, MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: Progress, challenges and prospects, Chem. Eng. J. 388 (2020) 124340. [174] W.J. Mu, S.Z. Du, X.L. Li, Q.H. Yu, H.Y. Wei, Y.C. Yang, S.M.Peng, Removal of radioactive palladium based on novel 2D titanium carbides, Chem. Eng. J. 358 (2019) 283–290. [175] F.Y. Meng, M. Seredych, C. Chen, V. Gura, S. Mikhalovsky, S. Sandeman, G. Ingavle, T. Ozulumba, L. Miao, B. Anasori, Y. Gogotsi, MXene sorbents for removal of urea from dialysate: A step toward the wearable artificial kidney, ACS Nano 12 (10) (2018) 10518–10528. [176] M.M. Tunesi, R.A. Soomro, X. Han, Q. Zhu, Y. Wei, B. Xu, Application of MXenes in environmental remediation technologies, Nano Converg. 8 (1) (2021) 5. |
[1] | Yinji Wan, Dekai Kong, Feng Xiong, Tianjie Qiu, Song Gao, Qiuning Zhang, Yefan Miao, Mulin Qin, Shengqiang Wu, Yonggang Wang, Ruiqin Zhong, Ruqiang Zou. Enhancing hydrophobicity via core–shell metal organic frameworks for high-humidity flue gas CO2 capture[J]. 中国化学工程学报, 2023, 61(9): 82-89. |
[2] | Pengcheng Hu, Ruimin Chai, Ping Wang, Jinke Yang, Shufeng Zhou. Supercapacitive properties of MnNiSx@Ti3C2Tx MXene positive electrode assisted by functionalized ionic liquid[J]. 中国化学工程学报, 2023, 61(9): 102-109. |
[3] | Mohamed Mobarak, Saleh Qaysi, Mohamed Saad Ahmed, Yasser F. Salama, Ahmed Mohamed Abbass, Mohamed Abd Elrahman, Hamdy A. Abdel-Gawwad, Moaaz K. Seliem. Insights into the adsorption performance and mechanism of Cr(VI) onto porous nanocomposite prepared from gossans and modified coal interface: Steric, energetic, and thermodynamic parameters interpretations[J]. 中国化学工程学报, 2023, 61(9): 118-128. |
[4] | Liu He, Yiyang Qiu, Chu Yao, Guojun Lan, Na Li, Huacong Zhou, Quansheng Liu, Xiucheng Sun, Zaizhe Cheng, Ying Li. Role of intrinsic defects on carbon adsorbent for enhanced removal of Hg2+ in aqueous solution[J]. 中国化学工程学报, 2023, 61(9): 129-139. |
[5] | Yang Yang, Dandan Liu, Xing Liang, Xiaobing Li. Influence of mineral species on oil–soil interfacial interaction in petroleum-contaminated soils[J]. 中国化学工程学报, 2023, 61(9): 147-156. |
[6] | Dongdong Hu, Yinglei Wang, Chuan Xiao, Yifei Hu, Zhiyong Zhou, Zhongqi Ren. Studies on ammonium dinitramide and 3,4-diaminofurazan cocrystal for tuning the hygroscopicity[J]. 中国化学工程学报, 2023, 61(9): 157-164. |
[7] | Chun Bai, Huifang Zhang, Qinglong Luo, Xiushen Ye, Haining Liu, Quan Li, Jun Li, Zhijian Wu. Boron separation by adsorption and flotation with Mg–Al-LDHs and SDBS from aqueous solution[J]. 中国化学工程学报, 2023, 61(9): 192-200. |
[8] | Reza Sacourbaravi, Zeinab Ansari-Asl, Esmaeil Darabpour. Magnetic polyacrylonitrile/ZIF-8/Fe3O4 nanocomposite bead as an efficient iodine adsorbent and antibacterial agent[J]. 中国化学工程学报, 2023, 61(9): 210-220. |
[9] | Wenming Hao, Basma I. Waisi, Timothy M. Vadas, Jeffrey R. McCutcheon. Chemically activated carbon nanofibers for adsorptive removal of bisphenol-A: Batch adsorption and breakthrough curve study[J]. 中国化学工程学报, 2023, 61(9): 248-259. |
[10] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions[J]. 中国化学工程学报, 2023, 60(8): 26-36. |
[11] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions[J]. 中国化学工程学报, 2023, 60(8): 108-117. |
[12] | Lingli Chen, Yueting Shi, Sijun Xu, Junle Xiong, Fang Gao, Shengtao Zhang, Hongru Li. Enhanced adsorption of target branched compounds including antibiotic norfloxacin frameworks on mild steel surface for efficient protection: An experimental and molecular modelling study[J]. 中国化学工程学报, 2023, 60(8): 212-227. |
[13] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants[J]. 中国化学工程学报, 2023, 60(8): 275-292. |
[14] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework[J]. 中国化学工程学报, 2023, 59(7): 9-15. |
[15] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine[J]. 中国化学工程学报, 2023, 59(7): 16-31. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||