[1] A.A. Chaugule, A.H. Tamboli, H. Kim, Ionic liquid as a catalyst for utilization of carbon dioxide to production of linear and cyclic carbonate, Fuel 200 (15) (2017) 316–332. [2] B.W. Jiang, J. Liu, G.Q. Yang, Z.B. Zhang, Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free poly(ionic liquid)s, Chin. J. Chem. Eng. 55 (2023) 202–211. [3] D. Valverde, R. Porcar, P. Lozano, E. García-Verdugo, S.V.Luis, Multifunctional polymers based on ionic liquid and rose Bengal fragments for the conversion of CO2 to carbonates, ACS Sustainable Chem. Eng. 9 (5) (2021) 2309–2318. [4] S. Motokucho, H. Morikawa, Poly(hydroxyurethane): catalytic applicability for the cyclic carbonate synthesis from epoxides and CO2, Chem. Commun. 56 (73) (2020) 10678–10681. [5] T.F. Wang, D.N. Zheng, B.B. An, Y. Liu, T.G. Ren, H. Ågren, L. Wang, J.L. Zhang, M.S.G. Ahlquist, Dual-ionic imidazolium salts to promote synthesis of cyclic carbonates at atmospheric pressure, Green Energy Environ. 7 (6) (2022) 1327–1339. [6] H.B. Song, Y.J. Wang, Y.L. Liu, L. Chen, B.X. Feng, X. Jin, Y. Zhou, T.T. Huang, M. Xiao, F.M. Huang, H.J. Gai, Conferring Poly(ionic liquid)s with High Surface Areas for Enhanced Catalytic Activity, ACS Sustain. Chem. Eng. 9(5) (2021) 2115–2128. [7] R.B. Mujmule, W-J. Chung, H. Kim, Chemical fixation of carbon dioxide catalyzed via hydroxyl and carboxyl-rich glucose carbonaceous material as a heterogeneous catalyst, Chem. Eng. J. 395 (2020) 125164–125175. [8] Q. Yi, T.T. Liu, X.B. Wang, Y.Y. Shan, X.Y. Li, M.G. Ding, L.J. Shi, H.B. Zeng, Y.C.Wu, One-step multiple-site integration strategy for CO2 capture and conversion into cyclic carbonates under atmospheric and cocatalyst/metal/solvent-free conditions, Appl. Catal. B Environ. 283 (2021) 119620–119630. [9] L.Z. Zheng, G.Q. Yang, X.B. Hu, Z.B. Zhang, CO2 capturing and in situ conversion at mild condition: efficient synthesis of methyl phenyl carbonate, J. Environ. Chem. Eng. 9 (5) (2021) 105862–105867. [10] L.Z. Zheng, G.Q. Yang, J. Liu, B.W. Jiang, T. Yu, X.B. Hu, Z.B.Zhang, Efficient chemical fixation of CO2 to form switchable ionic liquid to synthesize benzimidazolones under mild conditions, Chem. Eng. J. 442 (2022) 135122–135127. [11] X. Wang, H. Hu, B.H Chen, L.L Dang, G.H. Gao, Efficient synthesis of dimethyl carbonate via transesterification of ethylene carbonate catalyzed by swelling poly(ionic liquid)S, Green Chem. Eng. 2 (4) (2021) 423–430. [12] H. Huang, R.C. Samsun, R. Peters, D. Stolten, Greener production of dimethyl carbonate by the Power-to-Fuel concept: a comparative techno-economic analysis, Green Chem. 23 (4) (2021) 1734–1747. [13] A. Pyrlik, W.F. Hoelderich, K. Müller, W. Arlt, J. Strautmann, D.Kruse, Dimethyl carbonate via transesterification of propylene carbonate with methanol over ion exchange resins, Appl. Catal. B Environ. 125 (2012) 486–491. [14] W.J. Deng, J. Yao, L. Shi, W.S. Wei, F. Chen, G.W. Xu, A newfound ionic liquid with unprecedented activity for multiple base-catalyzed reactions, Chem. Eng. J. 427 (2022)–131964. [15] Y.Y. Zhang, B.H. Chen, Y.F. Zhang, L. Qin, B. Liu, B. Ni, G.H. Gao, Water-enriched poly(ionic liquid)s: highly-efficient microreactors for the hydrolysis of ethylene carbonate, Green Chem. 20 (7) (2018) 1594–1601. [16] D. Stoian, A. Bansode, F. Medina, A. Urakawa, Catalysis under microscope: Unraveling the mechanism of catalyst de- and re-activation in the continuous dimethyl carbonate synthesis from CO2 and methanol in the presence of a dehydrating agent, Catal. Today 283 (2017) 2–10. [17] B.C. Feng, Z.C. Zhang, J.Q. Wang, D.L. Yang, Q. Li, Y.P. Liu, H.J. Gai, T.T. Huang, H.B.Song, Synthesis of hydrophobic Pd-poly(ionic liquid)s with excellent CO2 affinity to efficiently catalyze CO2 hydrogenation to formic acid, Fuel 325 (2022) 124853–124864. [18] W.T. Ma, J.L. Hu, L. Zhou, Y.T. Wu, J. Geng, X.B. Hu, Efficient hydrogenation of CO2 to formic acid in water without consumption of a base, Green Chem. 24 (17) (2022) 6727–6732. [19] G.W. Yang, C.K. Xu, R. Xie, Y.Y. Zhang, X.F. Zhu, G.P. Wu, Pinwheel-shaped tetranuclear organoboron catalysts for perfectly alternating copolymerization of CO2 and epichlorohydrin, J. Am. Chem. Soc. 143 (9) (2021) 3455–3465. [20] V. Thangaraj, A. Bhaskarapillai, S. Velmurugan, Synthesis of a crosslinked poly(ionic liquid) and evaluation of its antimony binding properties, J. Hazard. Mater. 384 (2020) 121481–121490. [21] X.-L. Shi, M.M Du, B.Y. Sun, S.S. Liu, L.J. Jiang, Q.Q Hu, H.H Gong, G. Xu, B.Z. Liu, A novel fiber-supported superbase catalyst in the spinning basket reactor for cleaner chemical fixation of CO2 with 2-aminobenzonitriles in water, Chem. Eng. J. 430 (2022) 133204–133212. [22] M. Hulla, S.M.A. Chamam, G. Laurenczy, S. Das, P.J. Dyson, Delineating the mechanism of ionic liquids in the synthesis of quinazoline-2, 4(1H, 3H)-dione from 2-aminobenzonitrile and CO2, Angew. Chem. Int. Ed. 56 (35) (2017) 10559–10563. [23] T.F. Wang, D.D. Zheng, Z.K. Zhang, L. Wang, J.L. Zhang, Exploration of catalytic species for highly efficient preparation of quinazoline-2,4(1H,3H)-diones by succinimide-based ionic liquids under atmospheric pressure: Combination of experimental and theoretical study, Fuel 319 (2022) 123628–123635. [24] N.K. Vishwakarma, S. Singh, S. Vishwakarma, A.K. Sahi, V.K. Patel, S. Kant, S.K. Mahto, Converting CO2 into heterocyclic compounds under accelerated performance through Fe3O4-grafted ionic liquid catalysts, New J. Chem. 46 (6) (2022) 2887–2897. [25] B. Sarmah, R.Srivastava, Activation and utilization of CO2 using ionic liquid or amine-functionalized basic nanocrystalline zeolites for the synthesis of cyclic carbonates and quinazoline-2, 4(1H, 3H)-dione, Ind. Eng. Chem. Res. 56 (29) (2017) 8202–8215. [26] Q.Y. Wang, C.R. Lu, B. Zhao, Y.M. Yao, Synthesis and Characterization of Amidato Divalent Lanthanide Complexes and Their Use in Forming 2,4-Quinazolidinones from CO2 and 2-Aminobenzonitriles, Eur. J. Org. Chem. 14 (2016) 2555–2559. [27] Y.P. Patil, P.J. Tambade, K.D. Parghi, R.V. Jayaram, B.M. Bhanage, Synthesis of quinazoline-2, 4(1H, 3H)-diones from carbon dioxide and 2-aminobenzonitriles using MgO/ZrO2 as a solid base catalyst, Catal Lett 133 (1) (2009) 201–208. [28] J. Liu, G.Q. Yang, Y. Liu, D.J. Zhang, X.B. Hu, Z.B. Zhang, Efficient conversion of CO2 into cyclic carbonates at room temperature catalyzed by Al-salen and imidazolium hydrogen carbonate ionic liquids, Green Chem. 22 (14) (2020) 4509–4515. [29] K.Ghandi, A review of ionic liquids, their limits and applications, Green Sustain. Chem. 4 (1) (2014) 44–53. [30] Z.G. Lei, B.H. Chen, Y.M. Koo, D.R. MacFarlane, Introduction: ionic liquids, Chem. Rev. 117 (10) (2017) 6633–6635. [31] X.Y. Li, X.M. Liu, Y.S. Yu, C. Long, F. Zhang, Z.B. Zhang, Preparation and characterization of nanometre silicon-based ionic liquid micro-particle materials, J. Mol. Liq. 311 (2020) 113327–113334. [32] C.N. Dai, J. Zhang, C.P. Huang, Z.G. Lei, Ionic liquids in selective oxidation: catalysts and solvents, Chem. Rev. 117 (10) (2017) 6929–6983. [33] J. Zhao, Y. Liu, C. Zheng, Q. Lei, Y.Z. Dong, X.P. Zhao, J.B. Yin, Pickering emulsion polymerization of poly(ionic liquid)s encapsulated nano-SiO2 composite particles with enhanced electro-responsive characteristic, Polymer 146 (2018) 109–119. [34] S.W. Weng, J.Q. Dong, J.J. Ma, J.Y Bai, F.S. Liu, M.S. Liu, Biocompatible anions-derived ionic liquids a sustainable media for CO2 conversion into quinazoline-2, 4(1H, 3H)-diones under additive-free conditions, J. CO2 Util. 56 (2022) 101841–101847. [35] R. Ping, P.H. Zhao, Q.Q Zhang, G.Y. Zhang, F.S. Liu, M.S. Liu, Catalytic Conversion of CO2 from Simulated Flue Gases with Aminophenol-Based Protic Ionic Liquids to Produce Quinazoline-2,4(1H,3H)-diones under Mild Conditions, ACS Sustain. Chem. Eng. 9 (14) (2021) 5240–5249. [36] G.L. Shi, K.H. Chen, Y.T. Wang, H.R. Li, C.M.Wang, Highly efficient synthesis of quinazoline-2, 4(1H, 3H)-diones from CO2 by hydroxyl functionalized aprotic ionic liquids, ACS Sustainable Chem. Eng. 6 (5) (2018) 5760–5765. [37] F.S. Liu, R. Ping, P.H. Zhao, Y.Q. Gu, J. Gao, M.S.Liu, Succinimide-based ionic liquids: an efficient and versatile platform for transformation of CO2 into quinazoline-2, 4(1H, 3H)-diones under mild and solvent-free conditions, ACS Sustainable Chem. Eng. 7 (15) (2019) 13517–13522. [38] M.S. Chen, X.D. Wang, X.M. Liu, Y.T. Wu, F. Zhang, Z.B. Zhang, Anhydrous “Dry Ionic Liquids”: a promising absorbent for CO2 capture, J. Mol. Liq. 305 (2020) 112810–112816. [39] Y.Q. Xie, J. Liang, Y.W. Fu, M.T. Huang, X. Xu, H.T. Wang, S. Tu, J. Li, Hypercrosslinked mesoporous poly(ionic liquid)s with high ionic density for efficient CO2 capture and conversion into cyclic carbonates, J. Mater. Chem. A 6 (15) (2018) 6660–6666. [40] V.V. Phatake, T.A. Gokhale, B.M.Bhanage, [TBDH][HFIP]ionic liquid catalyzed synthesis of quinazoline-2, 4(1H, 3H)-diones in the presence of ambient temperature and pressure, J. Mol. Liq. 345 (2022) 117008–117014. [41] J. Gao, L.N. He, C.X. Miao, S. Chanfreau, Chemical fixation of CO2: efficient synthesis of quinazoline-2, 4(1H, 3H)-diones catalyzed by guanidines under solvent-free conditions, Tetrahedron 66 (23) (2010) 4063–4067. [42] A. Fujii, H. Matsuo, J.C. Choi, T. Fujitani, K.I. Fujita, Efficient synthesis of 2-oxazolidinones and quinazoline-2, 4(1H, 3H)-diones from CO2 catalyzed by tetrabutylammonium fluoride, Tetrahedron 74 (24) (2018) 2914–2920. [43] Z.Z. Sheng, M.M. Huang, T. Xue, F. Xia, H.H. Wu, Alcohol amine-catalyzed CO2 conversion for the synthesis of quinazoline-2, 4-(1H, 3H)-dione in water, RSC Adv. 10 (57) (2020) 34910–34915. [44] F.S. Liu, R. Ping, Y.Q. Gu, P.H. Zhao, B. Liu, J. Gao, M.S.Liu, Efficient one pot capture and conversion of CO2 into quinazoline-2, 4(1H, 3H)-diones using triazolium-based ionic liquids, ACS Sustainable Chem. Eng. 8 (7) (2020) 2910–2918. [45] D. B. Nale, S. Rana, K. Parida, B. M. Bhanage, Amine functionalized MCM-41 as a green, efficient, and heterogeneous catalyst for the regioselective synthesis of 5-aryl-2-oxazolidinones, from CO2 and aziridines, Appl. Catal. A Gen. 469 (2014) 340–349. [46] T. Kimura, H. Sunaba, K. Kamata, N. Mizuno, Efficient[WO4](2-)-catalyzed chemical fixation of carbon dioxide with 2-aminobenzonitriles to quinazoline-2, 4(1H, 3H)-diones, Inorg. Chem. 51 (23) (2012) 13001–13008. [47] Y.T. He, X. Li, H.P. Li, J. Ding, H. Wan, G.F. Guan, Understanding the ingenious dual role-playing of CO2 in one-pot pressure-swing synthesis of linear carbonate, ACS Sustainable Chem. Eng. 10 (7) (2022) 2556–2568. [48] J.W. Lan, M.S. Liu, X.Y. Lu, X. Zhang, J.M. Sun, Novel 3D Nitrogen-Rich Metal Organic Framework for Highly Efficient CO2 Adsorption and Catalytic Conversion to Cyclic Carbonates under Ambient Temperature, ACS Sustain. Chem. Eng. 6 (7) (2018) 8727–8735. [49] X.Y. Luo, Y. Guo, F. Ding, H.Q. Zhao, G.K. Cui, H.R. Li, C.M.Wang, Significant improvements in CO2Capture by pyridine-containing anion-functionalized ionic liquids through multiple-site cooperative interactions, Angew. Chem. Int. Ed. 53 (27) (2014) 7053–7057. [50] G.F. Yuan, Y.F. Zhao, Y.Y. Wu, R.P. Li, Y. Chen, D.M. Xu, Z.M. Liu, Cooperative effect from cation and anion of pyridine-containing anion-based ionic liquids for catalysing CO2 transformation at ambient conditions, Sci. China Chem. 60 (7) (2017) 958–963. [51] X.L. Mu, L.L. Han, T. Liu, How and why a protic ionic liquid efficiently catalyzes chemical fixation of CO2 to quinazoline-2, 4-(1H, 3H)-diones: electrostatically controlled reactivity, J. Phys. Chem. A 123 (43) (2019) 9394–9402. |