[1] G.Y. Xu, X.L. Guo, X.X. Cheng, J. Yu, B.Z. Fang, A review of Mn-based catalysts for low-temperature NH3-SCR: NOx removal and H2O/SO2 resistance, Nanoscale 13 (15) (2021) 7052–7080. [2] F.Y. Gao, X.L. Tang, H.H. Yi, S.Z. Zhao, C.L. Li, J.Y. Li, Y.R. Shi, X.M. Meng, A review on selective catalytic reduction of NOx by NH3 over Mn–based catalysts at low temperatures: Catalysts, mechanisms, kinetics and DFT calculations, Catalysts 7 (7) (2017) 199. [3] S.L. Bai, S.T. Jiang, H.Y. Li, Y.J. Guan, Carbon nanotubes loaded with vanadium oxide for reduction NO with NH3 at low temperature, Chin. J. Chem. Eng. 23 (3) (2015) 516–519. [4] M.F. Fu, C.T. Li, P. Lu, L. Qu, M.Y. Zhang, Y. Zhou, M.G. Yu, Y. Fang, A review on selective catalytic reduction of NOx by supported catalysts at 100-300 ℃—catalysts, mechanism, kinetics, Catal. Sci. Technol. 4 (1) (2014) 14–25. [5] T. Zhang, H.Z. Chang, Y.C. You, C.N. Shi, J.H. Li, Excellent activity and selectivity of one-pot synthesized Cu-SSZ-13 catalyst in the selective catalytic oxidation of ammonia to nitrogen, Environ. Sci. Technol. 52 (8) (2018) 4802–4808. [6] D. Damma, P. Ettireddy, B. Reddy, P. Smirniotis, A review of low temperature NH3-SCR for removal of NOx, Catalysts 9 (4) (2019) 349. [7] M.H. Zhang, B.J. Huang, H.X. Jiang, Y.F. Chen, Research progress in the SO2 resistance of the catalysts for selective catalytic reduction of NOx, Chin. J. Chem. Eng. 25 (12) (2017) 1695–1705. [8] T.W. Lan, Y.F. Zhao, J. Deng, J.P. Zhang, L.Y. Shi, D.S. Zhang, Selective catalytic oxidation of NH3 over noble metal-based catalysts: State of the art and future prospects, Catal. Sci. Technol. 10 (17) (2020) 5792–5810. [9] S.Y. Chang, G. Harle, J.L. Ma, J.H. Yi, The effect of textural properties of CeO2-SiO2 mixed oxides on NH3-SCO activity of Pt/CeO2-SiO2 catalyst, Appl. Catal. A 604 (2020) 117775. [10] Y.J. Chen, X. Chen, X.Y. Ma, Y.T. Tang, Y.K. Zhao, A.M. Zhang, C. Wang, C. Du, B. Shan, Selective catalytic oxidation of ammonia over AMn2O5 (a = Sm, Y, Gd) and reaction selectivity promotion through Nb decoration, J. Catal. 402 (2021) 10–21. [11] M. Jabłońska, TPR study and catalytic performance of noble metals modified Al2O3, TiO2 and ZrO2 for low-temperature NH3-SCO, Catal. Commun. 70 (2015) 66–71. [12] F.Y. Gao, Y.Y. Liu, Z. Sani, X.L. Tang, H.H. Yi, S.Z. Zhao, Q.J. Yu, Y.S. Zhou, Advances in selective catalytic oxidation of ammonia (NH3-SCO) to dinitrogen in excess oxygen: A review on typical catalysts, catalytic performances and reaction mechanisms, J. Environ. Chem. Eng. 9 (1) (2021) 104575. [13] M. Jabłońska, R. Palkovits, Copper based catalysts for the selective ammonia oxidation into nitrogen and water vapour—recent trends and open challenges, Appl. Catal. B 181 (2016) 332–351. [14] N.I. Il'chenko, Catalytic oxidation of ammonia, Russ. Chem. Rev. 45 (12) (1976) 1119–1134. [15] R.W. Mayer, M. Hävecker, A. Knop-Gericke, R. Schlögl, Investigation of ammonia oxidation over copper with in situ NEXAFS in the soft X-ray range: Influence of pressure on the catalyst performance, Catal. Lett. 74 (3) (2001) 115–119. [16] C.X. Liang, X.Y. Li, Z.P. Qu, M. Tade, S.M. Liu, The role of copper species on Cu/γ-Al2O3 catalysts for NH3-SCO reaction, Appl. Surf. Sci. 258 (8) (2012) 3738–3743. [17] Z.P. Qu, Z. Wang, X.Y. Zhang, H. Wang, Role of different coordinated Cu and reactive oxygen species on the highly active Cu-Ce-Zr mixed oxides in NH3-SCO: A combined in situ EPR and O2-TPD approach, Catal. Sci. Technol. 6 (12) (2016) 4491–4502. [18] W.R. Yue, R.D. Zhang, N. Liu, B.H. Chen, Selective catalytic oxidation of ammonia to nitrogen over orderly mesoporous CuFe2O4 with high specific surface area, Chin. Sci. Bull. 59 (31) (2014) 3980–3986. [19] S.Q. Song, S.J. Jiang, Selective catalytic oxidation of ammonia to nitrogen over CuO/CNTs: The promoting effect of the defects of CNTs on the catalytic activity and selectivity, Appl. Catal. B 117-118 (2012) 346–350. [20] G.L. Fan, F. Li, D.G. Evans, X. Duan, Catalytic applications of layered double hydroxides: Recent advances and perspectives, Chem. Soc. Rev. 43 (20) (2014) 7040–7066. [21] Q.H. Yan, X.T. Hou, G.C. Liu, Y.R. Li, T.Y. Zhu, Y.J. Xin, Q. Wang, Recent advances in layered double hydroxides (LDHs) derived catalysts for selective catalytic reduction of NOx with NH3, J. Hazard. Mater. 400 (2020) 123260. [22] X. Wu, H. Meng, Y.L. Du, J.N. Liu, B.H. Hou, X.M. Xie, Insight into Cu2O/CuO collaboration in the selective catalytic reduction of NO with NH3: Enhanced activity and synergistic mechanism, J. Catal. 384 (2020) 72–87. [23] Q.H. Yan, Y. Nie, R.Y. Yang, Y.H. Cui, D. O’Hare, Q. Wang, Highly dispersed CuyAlOx mixed oxides as superior low-temperature alkali metal and SO2 resistant NH3-SCR catalysts, Appl. Catal. A 538 (2017) 37–50. [24] L.G. Dou, H. Zhang, Facile assembly of nanosheet array-like CuMgAl-layered double hydroxide/rGO nanohybrids for highly efficient reduction of 4-nitrophenol, J. Mater. Chem. A 4 (48) (2016) 18990–19002. [25] M. Jabłońska, M. Nocuń, K. Gołąbek, R. Palkovits, Effect of preparation procedures on catalytic activity and selectivity of copper-based mixed oxides in selective catalytic oxidation of ammonia into nitrogen and water vapour, Appl. Surf. Sci. 423 (2017) 498–508. [26] L.Q. Jiang, L. Gao, Modified carbon nanotubes: An effective way to selective attachment of gold nanoparticles, Carbon 41 (15) (2003) 2923–2929. [27] C.S. Chen, T.G. Liu, X.H. Chen, L.J. Yao, Modified carbon nanotubes with citric acid and its dispersion properties, J. Sichuan Univ. Eng. Sci. Ed. 40 (3) (2008) 108–111, 182. [28] H.J. Wu, Z.H. Zhao, G.L. Wu, Facile synthesis of FeCo layered double oxide/raspberry-like carbon microspheres with hierarchical structure for electromagnetic wave absorption, J. Colloid Interface Sci. 566 (2020) 21–32. [29] J.Q. Tian, Y.Q. Li, X. Zhou, Y.B. Yao, D.H. Wang, J.M. Dan, B. Dai, Q. Wang, F. Yu, Overwhelming low ammonia escape and low temperature denitration efficiency via MnOx-decorated two-dimensional MgAl layered double oxides, Chin. J. Chem. Eng. 28 (7) (2020) 1925–1934. [30] R.T. Du, Y.L. Du, X.Z. Liu, Z.Y. Fan, X. Wu, NOx removal by selective catalytic reduction with NH3 over MOFs-derived MnTi catalyst, J. Environ. Chem. Eng. 10 (3) (2022) 108028. [31] X.F. Wu, J.N. Liu, X.Z. Liu, X. Wu, Y.L. Du, Fabrication of carbon doped Cu-based oxides as superior NH3-SCR catalysts via employing sodium dodecyl sulfonate intercalating CuMgAl-LDH, J. Catal. 407 (2022) 265–280. [32] T.W. Lan, J.A. Deng, X.Y. Zhang, F.L. Wang, X.Y. Liu, D.H. Cheng, D.S. Zhang, Unraveling the promotion effects of dynamically constructed CuOx-OH interfacial sites in the selective catalytic oxidation of ammonia, ACS Catal. 12 (7) (2022) 3955–3964. [33] L.G. Dou, T. Fan, H. Zhang, A novel 3D oxide nanosheet array catalyst derived from hierarchical structured array-like CoMgAl-LDH/graphene nanohybrid for highly efficient NOx capture and catalytic soot combustion, Catal. Sci. Technol. 5 (12) (2015) 5153–5167. [34] Q.H. Yan, S.N. Chen, L. Qiu, Y.S. Gao, D. O'Hare, Q. Wang, The synthesis of CuyMnzAl1-zOx mixed oxide as a low-temperature NH3-SCR catalyst with enhanced catalytic performance, Dalton Trans. 47 (9) (2018) 2992–3004. [35] M.D. Zhou, Z. Wang, Q. Sun, J.Y. Wang, C.H. Zhang, D. Chen, X.B. Li, High-performance Ag-Cu nanoalloy catalyst for the selective catalytic oxidation of ammonia, ACS Appl. Mater. Interfaces 11 (50) (2019) 46875–46885. [36] X.L. Yang, N. Li, Y.Q. Zhang, M.R. Li, M. Liu, Z.M. Tian, Q.L. Zhang, J.J. Chen, Insight into the role of WO3 on catalytic performance over CuO-CeO2 catalyst for NH3 selective catalytic oxidation reaction, J. Environ. Chem. Eng. 9 (6) (2021) 106621. [37] H.M. Wang, Q.L. Zhang, T.X. Zhang, J.F. Wang, G.C. Wei, M. Liu, P. Ning, Structural tuning and NH3-SCO performance optimization of CuO-Fe2O3 catalysts by impact of thermal treatment, Appl. Surf. Sci. 485 (2019) 81–91. [38] R.R. Gui, J.W. Xiao, Y.S. Gao, Y.R. Li, T.Y. Zhu, Q. Wang, Simultaneously achieving selective catalytic reduction of NOx with NH3 and catalytic oxidation of CO with O2 over one finely optimized bifunctional catalyst Mn2Cu1Al1Ox at low temperatures, Appl. Catal. B 306 (2022) 121104. [39] S.M. Lee, H.H. Lee, S.C. Hong, Influence of calcination temperature on Ce/TiO2 catalysis of selective catalytic oxidation of NH3 to N2, Appl. Catal. A 470 (2014) 189–198. [40] F.J. Li, F.T. Xia, K.X. Zhang, P.F. Pang, Q.L. Zhang, H.M. Wang, P. Ning, The promotional effect of SO42- on N2 selectivity for selective catalytic oxidation of ammonia over RuO2/ZrO2 catalyst, Res. Chem. Intermed. 46 (1) (2020) 803–820. [41] L. Zhang, J. Pierce, V.L. Leung, D. Wang, W.S. Epling, Characterization of ceria’s interaction with NOx and NH3, J. Phys. Chem. C 117 (16) (2013) 8282–8289. [42] Y.K. Yu, C.W. Chen, C. he, J.F. Miao, J.S. Chen, in situ growth synthesis of CuO@Cu-MOFs core-shell materials as novel low-temperature NH3-SCR catalysts, ChemCatChem (2018) cctc.201801718. [43] H.M. Wang, P. Ning, Q.L. Zhang, X. Liu, T.X. Zhang, J. Fan, J. Wang, K.X. Long, Promotional mechanism of WO3 over RuO2-Fe2O3 catalyst for NH3-SCO reaction, Appl. Catal. A 561 (2018) 158–167. [44] L. Zhang, H. He, Mechanism of selective catalytic oxidation of ammonia to nitrogen over Ag/Al2O3, J. Catal. 268 (1) (2009) 18–25. [45] R. Ma, Y.L. Du, X.Z. Liu, J.N. Liu, X. Wu, Synthesis of a novel CoNiV mixed oxides from hydrotalcite precursor and its application for selective catalytic oxidation of slip ammonia, J. Energy Inst. 102 (2022) 327–336. [46] Q.L. Zhang, H.M. Wang, P. Ning, Z.X. Song, X. Liu, Y.K. Duan, in situ DRIFTS studies on CuO-Fe2O3 catalysts for low temperature selective catalytic oxidation of ammonia to nitrogen, Appl. Surf. Sci. 419 (2017) 733–743. [47] X.Y. Zhang, H. Wang, L.L. Meng, X.W. Nie, Z.P. Qu, Investigation on Cu2O surface reconstruction and catalytic performance of NH3-SCO by experimental and DFT studies, ACS Appl. Energy Mater. 3 (4) (2020) 3465–3476. [48] H.L. Zhao, Z.P. Qu, H.C. Sun, Rational design of spinel CoMn2O4 with Co-enriched surface as high-activity catalysts for NH3-SCO reaction, Appl. Surf. Sci. 529 (2020) 147044. [49] Z.M. Liu, Y. Yi, S.X. Zhang, T.L. Zhu, J.Z. Zhu, J.G. Wang, Selective catalytic reduction of NOx with NH3 over Mn-Ce mixed oxide catalyst at low temperatures, Catal. Today 216 (2013) 76–81. |