[1] M. Al-Sabawi, J.W. Chen, S. Ng, Fluid catalytic cracking of biomass-derived oils and their blends with petroleum feedstocks: A review, Energy Fuels 26 (9) (2012) 5355–5372. [2] F. Güleç, W. Meredith, C.E. Snape, Progress in the CO2 capture technologies for fluid catalytic cracking (FCC) units—a review, Front. Energy Res. 8 (2020) 62. [3] S.Y. Li, Y. Qi, Y.N. Tang, H. Jubaer, B.Q. Dai, S. Zhou, Q.Q. Liu, Z.Y. Chen, Y.X. Zhu, H.T. Song, L. Zhang, Non-Destructive characterisation of coke deposit on FCC catalyst and its transient evolution upon Air-Firing and Oxy-Fuel regeneration, Chem. Eng. J. 430 (2022) 132998. [4] J.B. Zhou, J.P. Zhao, J.L. Zhang, T. Zhang, M. Ye, Z.M. Liu, Regeneration of catalysts deactivated by coke deposition: A review, Chin. J. Catal. 41 (7) (2020) 1048–1061. [5] X. Hu, Z.M. Zhang, M. Gholizadeh, S. Zhang, C.H. Lam, Z. Xiong, Y. Wang, Coke formation during thermal treatment of bio-oil, Energy Fuels 34 (7) (2020) 7863–7914. [6] Q. Almas, M.A. Naeem, M.A.S. Baldanza, J. Solomon, J.C. Kenvin, C.R. Müller, V.T. da Silva, C.W. Jones, C. Sievers, Transformations of FCC catalysts and carbonaceous deposits during repeated reaction-regeneration cycles, Catal. Sci. Technol. 9 (24) (2019) 6977–6992. [7] R. Palos, A. Gutiérrez, M.L. Fernández, D. Trueba, J. Bilbao, J.M. Arandes, Upgrading of heavy coker naphtha by means of catalytic cracking in refinery FCC unit, Fuel Process. Technol. 205 (2020) 106454. [8] A. Oloruntoba, Y.M. Zhang, C.S. Hsu, State-of-the-art review of fluid catalytic cracking (FCC) catalyst regeneration intensification technologies, Energies 15 (6) (2022) 2061. [9] T. Li, C.H. Yang, X.B. Chen, L.B. Yao, W. Liang, X.M. Ding, The correlation between nitrogen species in coke and NOx formation during regeneration, Chin. J. Chem. Eng. 24 (5) (2016) 606–611. [10] Z.P. Qie, A. Rabbani, Y. Liang, F. Sun, J. Behnsen, Y. Wang, S.G. Wang, Y.M. Zhang, H. Alhassawi, J.H. Gao, G.B. Zhao, M. Babaei, A.A. Garforth, Y.L. Jiao, X.L. Fan, Multiscale investigation of pore network heterogeneity and permeability of fluid catalytic cracking (FCC) particles, Chem. Eng. J. 440 (2022) 135843. [11] J. Biswas, I.E. Maxwell, Recent process- and catalyst-related developments in fluid catalytic cracking, Appl. Catal. 63 (1) (1990) 197–258. [12] F. Güleç, A. Erdogan, P.T. Clough, E. Lester, Investigation of the hydrodynamics in the regenerator of fluid catalytic cracking unit integrated by chemical looping combustion, Fuel Process. Technol. 223 (2021) 106998. [13] X.P. Zhang, Z.J. Sui, X.G. Zhou, W.K. Yuan, Modeling and simulation of coke combustion regeneration for coked Cr2O3/Al2O3 propane dehydrogenation catalyst, Chin. J. Chem. Eng. 18 (4) (2010) 618–625. [14] B. Amblard, R. Singh, E. Gbordzoe, L. Raynal, CFD modeling of the coke combustion in an industrial FCC regenerator, Chem. Eng. Sci. 170 (2017) 731–742. [15] G.Q. Chen, Z.H. Luo, X.Y. Lan, C.M. Xu, J.S. Gao, Evaluating the role of intraparticle mass and heat transfers in a commercial FCC riser: A meso-scale study, Chem. Eng. J. 228 (2013) 352–365. [16] E.S. Kikkinides, A.A. Lappas, A. Nalbadian, I.A. Vasalos, Correlation of reactor performance with catalyst structural changes during coke formation in FCC processes, Chem. Eng. Sci. 57 (6) (2002) 1011–1025. [17] J.M. Kanervo, A.O.I. Krause, J.R. Aittamaa, P.H. Hagelberg, K.J.T. Lipiäinen, I.H. Eilos, J.S. Hiltunen, V.M. Niemi, Kinetics of the regeneration of a cracking catalyst derived from TPO measurements, Chem. Eng. Sci. 56 (4) (2001) 1221–1227. [18] F. Meirer, S. Kalirai, D. Morris, S. Soparawalla, Y.J. Liu, G. Mesu, J.C. Andrews, B.M. Weckhuysen, Life and death of a single catalytic cracking particle, Sci. Adv. 1 (3) (2015) e1400199. [19] L.T. dos Santos, F.M. Santos, R.S. Silva, T.S. Gomes, P.M. Esteves, R.D.M. Pimenta, S.M.C. Menezes, O.R. Chamberlain, Y.L. Lam, M.M. Pereira, Mechanistic insights of CO2-coke reaction during the regeneration step of the fluid cracking catalyst, Appl. Catal. A 336 (1–2) (2008) 40–47. [20] Y.R. Wang, Z.M. Zhang, S. Zhang, Y. Wang, S. Hu, J. Xiang, T. Wei, S.L. Niu, X. Hu, Correlations of Lewis acidic sites of nickel catalysts with the properties of the coke formed in steam reforming of acetic acid, J. Energy Inst. 101 (2022) 277–289. [21] A. Ochoa, Á. Ibarra, J. Bilbao, J.M. Arandes, P. Castaño, Assessment of thermogravimetric methods for calculating coke combustion-regeneration kinetics of deactivated catalyst, Chem. Eng. Sci. 171 (2017) 459–470. [22] G. Tian, G. Wang, C.M. Xu, J.S. Gao, Coproduction of syngas during regeneration of coked catalyst for upgrading heavy petroleum feeds, Ind. Eng. Chem. Res. 52 (47) (2013) 16737–16744. [23] Y.M. Zhang, M.Q. Yao, G.G. Sun, S.Q. Gao, G.W. Xu, Characteristics and kinetics of coked catalyst regeneration via steam gasification in a micro fluidized bed, Ind. Eng. Chem. Res. 53 (15) (2014) 6316–6324. [24] H.Q. An, H. Li, J.B. Zhou, J.L. Zhang, T. Zhang, M. Ye, Z.M. Liu, Kinetics of steam regeneration of SAPO-34 zeolite catalyst in methanol-to-olefins (MTO) process, Chin. J. Chem. Eng. 35 (2021) 231–238. [25] A. Corma, L. Sauvanaud, E. Doskocil, G. Yaluris, Coke steam reforming in FCC regenerator: A new mastery over high coking feeds, J. Catal. 279 (1) (2011) 183–195. [26] S.C. Pereira, M.F. Ribeiro, N. Batalha, M.M. Pereira, Catalyst regeneration using CO2 as reactant through reverse-Boudouard reaction with coke, Greenh. Gases 7 (5) (2017) 843–851. [27] G. Tian, G. Wang, C.M. Xu, J.S. Gao, Gasification of the coke on spent-residue-pretreating catalysts with steam and steam–O2 mixtures, Energy Fuels 28 (2) (2014) 1372–1379. [28] Y.M. Zhang, D.P. Yu, W.L. Li, S.Q. Gao, G.W. Xu, H.Q. Zhou, J. Chen, Fundamental study of cracking gasification process for comprehensive utilization of vacuum residue, Appl. Energy 112 (2013) 1318–1325. [29] B. Behera, S.S. Ray, I.D. Singh, Structural characterization of FCC feeds from Indian refineries by NMR spectroscopy, Fuel 87 (10–11) (2008) 2322–2333. [30] Y.M. Zhang, L. Huang, X.Y. Xi, W.L. Li, G.G. Sun, S.Q. Gao, S. Zhang, Deep conversion of Venezuela heavy oil via integrated cracking and coke gasification–combustion process, Energy Fuels 31 (9) (2017) 9915–9922. [31] J.X. Tan, Y. He, Y. Yuan, Z.H. Wang, J.Z. Liu, K.F. Cen, Structure and combustion characteristics of semi-cokes from a pilot-scale entrained flow gasifier using oxygen-enriched air, J. Energy Inst. 97 (2021) 80–91. [32] R.E. Roncolatto, M.J.B. Cardoso, H.S. Cerqueira, Y.L. Lam, M. Schmal, XPS study of spent FCC catalyst regenerated under different conditions, Ind. Eng. Chem. Res. 46 (4) (2007) 1148–1152. [33] N. Salman, C.H. Rüscher, J.C. Buhl, W. Lutz, H. Toufar, M. Stöcker, Effect of temperature and time in the hydrothermal treatment of HY zeolite, Microporous Mesoporous Mater. 90 (1–3) (2006) 339–346. [34] N. Vandencasteele, F. Reniers, Plasma-modified polymer surfaces: Characterization using XPS, J. Electron Spectrosc. Relat. Phenom. 178-179 (2010) 394–408. [35] H.S. Cerqueira, G. Caeiro, L. Costa, F. Ramôa Ribeiro, Deactivation of FCC catalysts, J. Mol. Catal. A 292 (1–2) (2008) 1–13. [36] A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Pöschl, Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information, Carbon 43 (8) (2005) 1731–1742. [37] J.Q. Yu, Q.H. Guo, L. Ding, Y. Gong, G.S. Yu, Studying effects of solid structure evolution on gasification reactivity of coal chars by in situ Raman spectroscopy, Fuel 270 (2020) 117603. [38] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (9–10) (2015) 1051–1069. [39] J.A. Pask, A.P. Tomsia, Formation of mullite from sol-gel mixtures and kaolinite, J. Am. Ceram. Soc. 74 (10) (1991) 2367–2373. [40] A.J. Leonard, Structural analysis of the transition phases in the kaolinite-mullite thermal sequence, J. Am. Ceram. Soc. 60 (1–2) (1977) 37–43. [41] G. de la Puente, U. Sedran, Recycling polystyrene into fuels by means of FCC: Performance of various acidic catalysts, Appl. Catal. B 19 (3–4) (1998) 305–311. [42] M. Díaz, E. Epelde, J. Valecillos, S. Izaddoust, A.T. Aguayo, J. Bilbao, Coke deactivation and regeneration of HZSM-5 zeolite catalysts in the oligomerization of 1-butene, Appl. Catal. B 291 (2021) 120076. [43] Y. Song, S.L. Liu, Q.X. Wang, L.Y. Xu, Y.C. Zhai, Coke burning behavior of a catalyst of ZSM-5/ZSM-11 co-crystallized zeolite in the alkylation of benzene with FCC off-gas to ethylbenzene, Fuel Process. Technol. 87 (4) (2006) 297–302. |