[1] A. Hafner, P. Filipponi, L. Piccioni, M. Meisenbach, B. Schenkel, F. Venturoni, J. Sedelmeier, A simple scale-up strategy for organolithium chemistry in flow mode:from feasibility to kilogram quantities, Org. Process Res. Dev. 20(2016)1833-1837. [2] M. Hosoya, S. Nishijima, N. Kurose, Investigation into an unexpected impurity:A practical approach to process development for the addition of Grignard reagents to aldehydes using continuous flow synthesis, Org. Process. Res. Dev. 24(3)(2020)405-414. [3] T. Sato, New synthetic method of nanoparticles by micro chemical process technology, Fujifilm Res. Dev. Jpn. 53(2008)21-26. [4] D. Yamamoto, T. Maki, S. Watanabe, H. Tanaka, M.T. Miyahara, K. Mae, Synthesis and adsorption properties of ZIF-8 nanoparticles using a micromixer, Chem. Eng. J. 227(2013)145-150. [5] J. Han, Z.X. Zhu, H.T. Qian, A.R. Wohl, C.J. Beaman, T.R. Hoye, C.W. Macosko, A simple confined impingement jets mixer for flash nanoprecipitation, J. Pharm. Sci. 101(10)(2012)4018-4023. [6] K. Inohara, S. Asano, T. Maki, K. Mae, Synthesis of small lipid nanoparticles using an inkjet mixing system aiming to reduce drug loss, Chem. Eng. Technol. 42(10)(2019)2061-2066. [7] S. Watanabe, T. Koshiyama, T. Watanabe, M.T. Miyahara, Room-temperature synthesis of Ni and Pt-co alloy nanoparticles using a microreactor, Front. Chem. Eng. 3(2021)780384. [8] Y.H. Gao, B. Pinho, L. Torrente-Murciano, Tailoring the size of silver nanoparticles by controlling mixing in microreactors, Chem. Eng. J. 432(2022)134112. [9] M. Yang, L. Yang, J. Zheng, N. Hondow, R.Bourne, T. Bailey, G. Irons, E. Sutherland, D. Lavric, K.-J. Wu,Mixing performance and continuous production of nanomaterials in an advanced-flow reactor,Chemical Engineering Journal,412(2021)128565. [10] H. Usutani, K. Yamamoto, K. Hashimoto, Process intensification of a napabucasin manufacturing method utilizing microflow chemistry, ACS Omega 8(11)(2023)10373-10382. [11] N. Aoki, T. Fukuda, N. Maeda, K. Mae, Design of confluence and bend geometry for rapid mixing in microchannels, Chem. Eng. J. 227(2013)198-202. [12] S. Camarri, A. Mariotti, C. Galletti, E. Brunazzi, R. Mauri, M.V. Salvetti, An overview of flow features and mixing in micro T and arrow mixers, Ind. Eng. Chem. Res. 59(9)(2020)3669-3686. [13] H. Kitamura, Y. Otake, N. Sugisawa, H. Sugisawa, T. Ida, H. Nakamura, S. Fuse, Sequential nucleophilic substitution of phosphorus trichloride with alcohols in a continuous-flow reactor and consideration of a mechanism for reduced over-reaction through the addition of imidazole, Chem. A Eur. J. 28(37)(2022) e202200932. [14] Y.Y. Jiang, H. Yorimitsu, Taming highly unstable radical anions and 1, 4-organodilithiums by flow microreactors:Controlled reductive dimerization of styrenes, JACS Au 2(11)(2022)2514-2521. [15] F. Carraro, J.D. Williams, M. Linares-Moreau, C. Parise, W. Liang, H. Amenitsch, C. Doonan, C.O. Kappe, P. Falcaro, Continuous-flow synthesis of ZIF-8 biocomposites with tunable particle size, Angew. Chem. Int. Ed Engl. 59(21)(2020)8123-8127. [16] A. Mariotti, C. Galletti, E. Brunazzi, M.V. Salvetti, Unsteady flow regimes in arrow-shaped micro-mixers with different tilting angles, Phys. Fluids 33(1)(2021):012008. [17] A.S. Lobasov, A.V. Minakov, V.V. Kuznetsov, V.Y. Rudyak, A.A. Shebeleva, Investigation of mixing efficiency and pressure drop in T-shaped micromixers, Chem. Eng. Process. Process. Intensif. 134(2018)105-114. [18] K.P. Cheng, C.Y. Liu, T.Y. Guo, L.X. Wen, CFD and experimental investigations on the micromixing performance of single countercurrent-flow microchannel reactor, Chin. J. Chem. Eng. 27(5)(2019)1079-1088. [19] H. Kim, A. Nagaki, J.I. Yoshida, A flow-microreactor approach to protecting-group-free synthesis using organolithium compounds, Nat. Commun. 2(2011)264. [20] S. Asano, S. Yatabe, T. Maki, K. Mae, Numerical and experimental quantification of the performance of microreactors for scaling-up fast chemical reactions, Org. Process Res. Dev. 23(5)(2019)807-817. [21] A. Nagaki, S. Ishiuchi, K. Imai, K. Sasatsuki, Y. Nakahara, J.I. Yoshida, Micromixing enables chemoselective reactions of difunctional electrophiles with functional aryllithiums, React. Chem. Eng. 2(6)(2017)862-870. [22] K. Wang, H.M. Zhang, Y. Shen, A. Adamo, K.F. Jensen, Thermoformed fluoropolymer tubing for in-line mixing, React. Chem. Eng. 3(5)(2018)707-713. [23] M.C. Fournier, L. Falk, J. Villermaux, A new parallel competing reaction system for assessing micromixing efficiency-experimental approach, Chem. Eng. Sci. 51(22)(1996)5053-5064. [24] A.P. LaGrow, M.O. Besenhard, A. Hodzic, A. Sergides, L.K. Bogart, A. Gavriilidis, N.T.K. Thanh, Unravelling the growth mechanism of the co-precipitation of iron oxide nanoparticles with the aid of synchrotron X-Ray diffraction in solution, Nanoscale 11(14)(2019)6620-6628. [25] A.N. Manzano Martinez, A. Chaudhuri, M. Assirelli, J. van der Schaaf, Effects of increased viscosity on micromixing in rotor-stator spinning disk reactors, Chem. Eng. J. 434(2022)134292. [26] Y. Ouyang, M. Nunez Manzano, R. Wetzels, S.Y. Chen, X.J. Lang, G.J. Heynderickx, K.M. Van Geem, Liquid hydrodynamics in a gas-liquid vortex reactor, Chem. Eng. Sci. 246(2021)116970. [27] E. Arian, W. Pauer, Contributions to the kinetics of the iodide-iodate test reaction for micromixing time calculation with extended incorporation models, Chem. Eng. Sci. 237(2021)116549. [28] J.M. Commenge, L. Falk, Villermaux-Dushman protocol for experimental characterization of micromixers, Chem. Eng. Process. 50(10)(2011)979-990. [29] S. Dreher, N. Kockmann, P. Woias, Characterization of laminar transient flow regimes and mixing in T-shaped micromixers, Heat Transf. Eng. 30(1-2)(2009)91-100. [30] A. Kukukova, J. Aubin, S.M. Kresta, A new definition of mixing and segregation:Three dimensions of a key process variable, Chem. Eng. Res. Des. 87(4)(2009)633-647. [31] S. Asano, T. Maki, S. Inoue, S. Sogo, M. Furuta, S. Watanabe, Y. Muranaka, S. Kudo, J.I. Hayashi, K. Mae, Incorporative mixing in microreactors:Influence on reactions and importance of inlet designation, SSRN Electron. J. 451(2023)138942. [32] D. Bothe, C. Stemich, H.J. Warnecke, Computation of scales and quality of mixing in a T-shaped microreactor, Comput. Chem. Eng. 32(1-2)(2008)108-114. [33] C. Galletti, A. Mariotti, L. Siconolfi, R. Mauri, E. Brunazzi, Numerical investigation of flow regimes in T-shaped micromixers:Benchmark between finite volume and spectral element methods, Can. J. Chem. Eng. 97(2)(2019)528-541. [34] S. Schwolow, J. Hollmann, B. Schenkel, T. Roder, Application-oriented analysis of mixing performance in microreactors, Org. Process. Res. Dev. 16(9)(2012)1513-1522. [35] A. Mariotti, C. Galletti, R. Mauri, M. Salvetti, E. Brunazzi, Effect of stratification on the mixing and reaction yield in a T-shaped micro-mixer, Phys. Rev. Fluids. 6(2021)024202. [36] T. Fukuda, Study on micro channel design method and highly efficient gas phase catalytic reaction and separation operationPh. D. Thesis, Kyoto University, 2014. [37] D.F. Liu, S. Cito, Y.Z. Zhang, C.F. Wang, T.M. Sikanen, H.A. Santos, A versatile and robust microfluidic platform toward high throughput synthesis of homogeneous nanoparticles with tunable properties, Adv. Mater. 27(14)(2015)2298-2304. [38] S. Asano, S. Yamada, T. Maki, Y. Muranaka, K. Mae, Design protocol of microjet mixers for achieving desirable mixing times with arbitrary flow rate ratios, React. Chem. Eng. 2(6)(2017)830-841. [39] P. Rojahn, O. Russ, L. Gossl, M. Kroschel, F. Herbstritt, J. Heck, F. Schael, Mixing performance in a distributed-feed plate-type reactor with multinozzle injection for fine chemical production scale, Ind. Eng. Chem. Res. 59(9)(2020)3655-3668. [40] M.C. Rose, J. Stuehr, Kinetics of proton transfer reactions in aqueous solution. III. Rates of internally hydrogen-bonded systems, J. Am. Chem. Soc. 90(26)(1968)7205-7209. [41] S. Asano, T. Maki, K. Mae, Evaluation of mixing profiles for a new micromixer design strategy, AlChE. J. 62(4)(2016)1154-1161. [42] M. Hoffmann, M. Schluter, N. Rabiger, Experimental investigation of liquid-liquid mixing in T-shaped micro-mixers using Μ, Chem. Eng. Sci. 61(9)(2006)2968-2976. [43] Y. Murakami, A. Shono, Reaction engineering with recurrent neural network:Kinetic study of Dushman reaction, Chem. Eng. J. Adv. 9(2022)100219. |