[1] X.Z. Du, X.M. Lei, L.Y. Zhou, Y. Peng, Y. Zeng, H.R. Yang, D. Li, C.W. Hu, H. Garcia, Bimetallic Ni and Mo nitride as an efficient catalyst for hydrodeoxygenation of palmitic acid, ACS Catal. 12(8)(2022)4333-4343. [2] R.H. Wijffels, M.J. Barbosa, An outlook on microalgal biofuels, Science 329(5993)(2010)796-799. [3] P.G. Duan, P.E. Savage, Catalytic hydrotreatment of crude algal bio-oil in supercritical water, Appl. Catal. B 104(1-2)(2011)136-143. [4] C.Y. Yang, R.F. Nie, J. Fu, Z.Y. Hou, X.Y. Lu, Production of aviation fuel via catalytic hydrothermal decarboxylation of fatty acids in microalgae oil, Bioresour. Technol. 146(2013)569-573. [5] B.X. Peng, Y.A. Yao, C. Zhao, J.A. Lercher, Towards quantitative conversion of microalgae oil to diesel-range alkanes with bifunctional catalysts, Angew. Chem. Int. Ed. 51(9)(2012)2072-2075. [6] Y.X. Yang, C. Ochoa-Hernández, V.A. de la Peńa O'Shea, J.M. Coronado, D.P. Serrano, Ni2P/SBA-15 As a hydrodeoxygenation catalyst with enhanced selectivity for the conversion of methyl oleate into n-octadecane, ACS Catal. 2(4)(2012)592-598. [7] G. Knothe, K.R. Steidley, Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components, Fuel 84(9)(2005)1059-1065. [8] K.D. Maher, D.C. Bressler, Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals, Bioresour. Technol. 98(12)(2007)2351-2368. [9] B.X. Peng, X.G. Yuan, C. Zhao, J.A. Lercher, Stabilizing catalytic pathways via redundancy:Selective reduction of microalgae oil to alkanes, J. Am. Chem. Soc. 134(22)(2012)9400-9405. [10] S.P. Zou, Y.L. Wu, M.D. Yang, C. Li, J.M. Tong, Bio-oil production from sub-and supercritical water liquefaction of microalgae Dunaliella tertiolecta and related properties, Energy Environ. Sci. 3(8)(2010)1073-1078. [11] H. Chen, Q.F. Wang, X.W. Zhang, L. Wang, Quantitative conversion of triglycerides to hydrocarbons over hierarchical ZSM-5 catalyst, Appl. Catal. B 166-167(2015)327-334. [12] S.K. Kim, J.Y. Han, H.S. Lee, T. Yum, Y. Kim, J. Kim, Production of renewable diesel via catalytic deoxygenation of natural triglycerides:Comprehensive understanding of reaction intermediates and hydrocarbons, Appl. Energy 116(2014)199-205. [13] E. Kordouli, L. Sygellou, C. Kordulis, K. Bourikas, A. Lycourghiotis, Probing the synergistic ratio of the NiMo/γ-Al2O3 reduced catalysts for the transformation of natural triglycerides into green diesel, Appl. Catal. B 209(2017)12-22. [14] Y.D. Zhou, L. Liu, G.Y. Li, C.W. Hu, Insights into the influence of ZrO2 crystal structures on methyl laurate hydrogenation over Co/ZrO2 catalysts, ACS Catal. 11(12)(2021)7099-7113. [15] X.C. Cao, F. Long, G.Y. Zhang, J.M. Xu, J.C. Jiang, Selective hydrogenation of methyl palmitate to cetyl alcohol via ternary synergistic catalysis of Ni, oxygen vacancies, and lewis acid sites under mild reaction conditions, ACS Sustainable Chem. Eng. 9(29)(2021)9789-9801. [16] L.W. Wang, X.X. Niu, J.X. Chen, SiO2 supported Ni-In intermetallic compounds:Efficient for selective hydrogenation of fatty acid methyl esters to fatty alcohols, Appl. Catal. B 278(2020)119293. [17] A. Ali, C. Zhao, Ru nanoparticles supported on hydrophilic mesoporous carbon catalyzed low-temperature hydrodeoxygenation of microalgae oil to alkanes at aqueous-phase, Chin. J. Catal. 41(8)(2020)1174-1185. [18] M.B. Gawande, P. Fornasiero, R. Zboril, Carbon-based single-atom catalysts for advanced applications, ACS Catal. 10(3)(2020)2231-2259. [19] Z.M. Chen, X.A. Zeng, S.Y. Wang, A.H. Cheng, Y. Zhang, Advanced carbon-based nanocatalysts and their application in catalytic conversion of renewable platform molecules, ChemSusChem 15(11)(2022):https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.202200411. [20] Z.P. Qie, F. Sun, Z.K. Zhang, X.X. Pi, Z.B. Qu, J.H. Gao, G.B. Zhao, A facile trace potassium assisted catalytic activation strategy regulating pore topology of activated coke for combined removal of toluene/SO2/NO, Chem. Eng. J. 389(2020)124262. [21] G.H. Hou, G.Z. Xue, L. Yue, Q.F. Zhang, Preparation and activation mechanism of rice husk based mesoporous carbon, Asian J. Chem. 27(11)(2015)4285-4287. [22] H.F. Xiong, H.N. Pham, A.K. Datye, Hydrothermally stable heterogeneous catalysts for conversion of biorenewables, Green Chem. 16(11)(2014)4627-4643. [23] D.J.M. de Vlieger, L. Lefferts, K. Seshan, Ru decorated carbon nanotubes-a promising catalyst for reforming bio-based acetic acid in the aqueous phase, Green Chem. 16(2)(2014)864. [24] S. Mondal, R. Singuru, S. Chandra Shit, T. Hayashi, S. Irle, Y. Hijikata, J. Mondal, A. Bhaumik, Ruthenium nanoparticle-decorated porous organic network for direct hydrodeoxygenation of long-chain fatty acids to alkanes, ACS Sustainable Chem. Eng. 6(2)(2018)1610-1619. [25] J. Zhang, X.C. Huo, Y.L. Li, T.J. Strathmann, Catalytic hydrothermal decarboxylation and cracking of fatty acids and lipids over Ru/C, ACS Sustainable Chem. Eng. 7(17)(2019)14400-14410. [26] X. Liu, M. Yang, Z.H. Deng, A. Dasgupta, Y. Guo, Hydrothermal hydrodeoxygenation of palmitic acid over Pt/C catalyst:Mechanism and kinetic modeling, Chem. Eng. J. 407(2021)126332. [27] G.Y. Xu, Y. Zhang, Y. Fu, Q.X. Guo, Efficient hydrogenation of various renewable oils over Ru-HAP catalyst in water, ACS Catal. 7(2)(2017)1158-1169. [28] X. Gao, D.M. Tong, H. Zhong, B.B. Jin, F.M. Jin, H. Zhang, Highly efficient conversion of fatty acids into fatty alcohols with a Zn over Ni catalyst in water, RSC Adv. 6(33)(2016)27623-27626. [29] H. Zhong, C.L. Jiang, X. Zhong, J. Wang, B.B. Jin, G.D. Yao, L.G. Luo, F.M. Jin, Non-precious metal catalyst, highly efficient deoxygenation of fatty acids to alkanes with in situ hydrogen from water, J. Clean. Prod. 209(2019)1228-1234. [30] C. Miao, O. Marin-Flores, S.D. Davidson, T.T. Li, T. Dong, D.F. Gao, Y. Wang, M. Garcia-Perez, S.L. Chen, Hydrothermal catalytic deoxygenation of palmitic acid over nickel catalyst, Fuel 166(2016)302-308. [31] A.A. Yaroshevsky, Abundances of chemical elements in the Earth's crust, Geochem. Int. 44(1)(2006)48-55. [32] Metal price in international market, China Nonferrous Metallurgy, 47(2018)93. [33] M. Lin, W. Na, H.C. Ye, H.H. Huo, W.G. Gao, Effect of additive on CuO-ZnO/SBA-15 catalytic performance of CO2 hydrogenation to methanol, J. Fuel Chem. Technol. 47(10)(2019)1214-1225. [34] M. Lin, X. Zhang, L.L. Zhan, X.X. Li, X.L. Song, Y.L. Wu, Product distribution-tuned and excessive hydrocracking inhibiting in fatty acid deoxygenation over amorphous Co@SiO2 porous nanorattles, Fuel 318(2022)123605. [35] Y.X. Liu, X.J. Yang, H.Y. Liu, Y.H. Ye, Z.J. Wei, Nitrogen-doped mesoporous carbon supported Pt nanoparticles as a highly efficient catalyst for decarboxylation of saturated and unsaturated fatty acids to alkanes, Appl. Catal. B 218(2017)679-689. [36] Y.F. Song, L. Li, Y.G. Wang, C.X. Wang, Z.P. Guo, Y.Y. Xia, Nitrogen-doped ordered mesoporous carbon with a high surface area, synthesized through organic-inorganic coassembly, and its application in supercapacitors, ChemPhysChem 15(10)(2014)2084-2093. [37] X.A. Xu, Y. Li, Y.T. Gong, P.F. Zhang, H.R. Li, Y. Wang, Synthesis of palladium nanoparticles supported on mesoporous N-doped carbon and their catalytic ability for biofuel upgrade, J. Am. Chem. Soc. 134(41)(2012)16987-16990. [38] P. Liu, C.Z. Chen, M.H. Zhou, J.M. Xu, H.H. Xia, S.B. Shang, J.C. Jiang, Metal-organic framework-derived Ni-based catalyst for the hydrotreatment of triolein into green diesel, Sustain. Energy Fuels 5(6)(2021)1809-1820. [39] M.H. Zhou, L.F. Tian, L. Niu, C. Li, G.M. Xiao, R. Xiao, Upgrading of liquid fuel from fast pyrolysis of biomass over modified Ni/CNT catalysts, Fuel Process. Technol. 126(2014)12-18. [40] C.H. Liang, W.P. Ma, Z.C. Feng, C. Li, Activated carbon supported bimetallic CoMo carbides synthesized by carbothermal hydrogen reduction, Carbon 41(9)(2003)1833-1839. [41] I. Shilov, A. Smirnov, O. Bulavchenko, V. Yakovlev, Effect of Ni-Mo carbide catalyst formation on furfural hydrogenation, Catalysts 8(11)(2018)560. [42] Q.X. Ma, D. Wang, M.B. Wu, T.S. Zhao, Y. Yoneyama, N. Tsubaki, Effect of catalytic site position:Nickel nanocatalyst selectively loaded inside or outside carbon nanotubes for methane dry reforming, Fuel 108(2013)430-438. [43] W. Wang, W. Chu, N. Wang, W. Yang, C.F. Jiang, Mesoporous nickel catalyst supported on multi-walled carbon nanotubes for carbon dioxide methanation, Int. J. Hydrog. Energy 41(2)(2016)967-975. [44] C. Herrera, J. Pinto-Neira, D. Fuentealba, C. Sepulveda, A. Rosenkranz, J.L. Garcia-Fierro, M. Gonzalez, N. Escalona, Effect of Ni metal content on emulsifying properties of Ni/CNTox catalysts for catalytic conversion of furfural in Pickering emulsions, ChemCatChem 13(2)(2021)682-694. [45] M. Zhang, Y.Q. Liu, B.Y. Liu, Z. Chen, H. Xu, K. Yan, Trimetallic NiCoFe-layered double hydroxides nanosheets efficient for oxygen evolution and highly selective oxidation of biomass-derived 5-hydroxymethylfurfural, ACS Catal. 10(9)(2020)5179-5189. [46] L. Xu, Q.Q. Jiang, Z.H. Xiao, X.Y. Li, J. Huo, S.Y. Wang, L.M. Dai, Plasma-engraved Co3 O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction, Angew. Chem. Int. Ed Engl. 55(17)(2016)5277-5281. [47] R.R. Ding, Y.L. Wu, Y. Chen, H. Chen, J.L. Wang, Y.C. Shi, M.D. Yang, Catalytic hydrodeoxygenation of palmitic acid over a bifunctional Co-doped MoO2/CNTs catalyst:An insight into the promoting effect of cobalt, Catal. Sci. Technol. 6(7)(2016)2065-2076. [48] Z.F. Huang, J.J. Song, Y.H. Du, S.B. Xi, S. Dou, J.M.V. Nsanzimana, C. Wang, Z.J. Xu, X. Wang, Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts, Nat. Energy 4(4)(2019)329-338. [49] W.L. Yang, X.P. Yang, J. Jia, C.M. Hou, H.T. Gao, Y.N. Mao, C. Wang, J.H. Lin, X.L. Luo, Oxygen vacancies confined in ultrathin nickel oxide nanosheets for enhanced electrocatalytic methanol oxidation, Appl. Catal. B 244(2019)1096-1102. [50] B.X. Peng, C. Zhao, S. Kasakov, S. Foraita, J.A. Lercher, Manipulating catalytic pathways:Deoxygenation of palmitic acid on multifunctional catalysts, Chem. Eur. J. 19(15)(2013)4732-4741. [51] S. Foraita, J.L. Fulton, Z.A. Chase, A. Vjunov, P.H. Xu, E. Baráth, D.M. Camaioni, C. Zhao, J.A. Lercher, Impact of the oxygen defects and the hydrogen concentration on the surface of tetragonal and monoclinic ZrO2 on the reduction rates of stearic acid on Ni/ZrO2, Chem. Eur. J. 21(6)(2015)2423-2434. [52] A. Ali, B.L. Li, Y.J. Lu, C. Zhao, Highly selective and low-temperature hydrothermal conversion of natural oils to fatty alcohols, Green Chem. 21(11)(2019)3059-3064. [53] Y.C. Deng, Y.Z. Ge, M. Xu, Q.L. Yu, D.Q. Xiao, S.Y. Yao, D. Ma, Molybdenum carbide:Controlling the geometric and electronic structure of noble metals for the activation of O-H and C-H bonds, Acc. Chem. Res. 52(12)(2019)3372-3383. [54] F. Wang, W.J. Zhang, J.C. Jiang, J.M. Xu, Q.L. Zhai, L.S. Wei, F. Long, C. Liu, P. Liu, W.H. Tan, D.H. He, Nitrogen-rich carbon-supported ultrafine MoC nanoparticles for the hydrotreatment of oleic acid into diesel-like hydrocarbons, Chem. Eng. J. 382(2020)122464. [55] J. Ni, W.H. Leng, J. Mao, J.G. Wang, J.Y. Lin, D.H. Jiang, X.N. Li, Tuning electron density of metal nickel by support defects in Ni/ZrO2 for selective hydrogenation of fatty acids to alkanes and alcohols, Appl. Catal. B 253(2019)170-178. [56] R.R. Ding, Y.L. Wu, Y. Chen, J.M. Liang, J. Liu, M.D. Yang, Effective hydrodeoxygenation of palmitic acid to diesel-like hydrocarbons over MoO2/CNTs catalyst, Chem. Eng. Sci. 135(2015)517-525. [57] Q.R. Tian, Z.H. Zhang, F. Zhou, K.Q. Chen, J.E. Fu, X.Y. Lu, P.K. Ouyang, Role of solvent in catalytic conversion of oleic acid to aviation biofuels, Energy Fuels 31(6)(2017)6163-6172. [58] M. Snåre, I. Kubičková, P. Mäki-Arvela, K.R. Eränen, D.Y. Murzin, Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel, Ind. Eng. Chem. Res. 45(16)(2006)5708-5715. [59] R.W. Gosselink, D.R. Stellwagen, J.H. Bitter, Tungsten-based catalysts for selective deoxygenation, Angew. Chem. Int. Ed. 52(19)(2013)5089-5092. [60] Y.N. Duan, Y.L. Wu, Q.H. Zhang, R.R. Ding, Y. Chen, J. Liu, M.D. Yang, Towards conversion of octanoic acid to liquid hydrocarbon via hydrodeoxygenation over Mo promoter nickel-based catalyst, J. Mol. Catal. A 398(2015)72-78. [61] J.X. Han, J.Z. Duan, P. Chen, H. Lou, X.M. Zheng, H.P. Hong, Nanostructured molybdenum carbides supported on carbon nanotubes as efficient catalysts for one-step hydrodeoxygenation and isomerization of vegetable oils, Green Chem. 13(9)(2011)2561-2568. [62] K. Kandel, J.W. Anderegg, N.C. Nelson, U. Chaudhary, I.I. Slowing, Supported iron nanoparticles for the hydrodeoxygenation of microalgal oil to green diesel, J. Catal. 314(2014)142-148. [63] M. Li, S.Y. Xing, L.M. Yang, J.Y. Fu, P.M. Lv, Z.M. Wang, Z.H. Yuan, Nickel-loaded ZSM-5 catalysed hydrogenation of oleic acid:The game between acid sites and metal centres, Appl. Catal. A 587(2019)117112. [64] M. Li, J.Y. Fu, S.Y. Xing, L.M. Yang, X.F. Zhang, P.M. Lv, Z.M. Wang, Z.H. Yuan, A novel catalyst with variable active sites for the direct hydrogenation of waste oils into jet fuel, Appl. Catal. B 260(2020)118114. |