[1] S.Q. Zhang, Q. Li, Q.T. Xie, H.W. Zhu, W.W. Xu, Z.Z. Liu, Mechanism analysis of heavy oil viscosity reduction by ultrasound and viscosity reducers based on molecular dynamics simulation, ACS Omega 7(41)(2022)36137-36149. [2] M. Hafez, A.P. Ratanpara, Y. Martiniere, M. Dagois, M. Ghazvini, M. Kavosi, P. Mandin, M. Kim, CO2-monoethanolamine-induced oil swelling and viscosity reduction for enhanced oil recovery, J. Petrol. Sci. Eng. 206(2021)109022. [3] B. Qin, L. Zhao, J.L. Jiang, Study on viscosity reducing and oil displacement agent for water-flooding heavy oil reservoir, China Pet. Process. Petrochem. Technol. 24(1)(2022)11-18. [4] F.F. Zhang, Y.G. Liu, Q.X. Wang, Y.G. Han, Z.H. Yan, H. Chen, Y.B. Tan, Fabricating a heavy oil viscosity reducer with weak interaction effect:Synthesis and viscosity reduction mechanism, Colloid Interface Sci. Commun. 42(2021)100426. [5] X.L. Tang, W.M. Duan, K. Xu, C.C. Zheng, Three-dimensional network gel structure and viscosity reduction mechanism of heavy oil, Colloids Surf. A Physicochem. Eng. Aspects 653(2022)130060. [6] Y. Xu, K.N. Heck, C. Ayala-Orozco, J.H. Arredondo, W. Zenor, M. Shammai, M.S. Wong, Heavy oil viscosity reduction at mild temperatures using palladium acetylacetonate, Fuel 294(2021)120546. [7] Q. Sun, N. Zhang, W. Liu, B.F. Li, S.Y. Li, A. Bhusal, S.H. Wang, Z.M. Li, Insights into enhanced oil recovery by thermochemical fluid flooding for ultra-heavy reservoirs:An experimental study, Fuel 331(2023)125651. [8] Y. Wang, C.Y. Liu, L.Y. Jia, Z.L. Peng, J.Q. Wang, J.Z. Yang, Y. Pan, On-line photoionization mass spectrometric study of the catalytic pyrolysis of acrylonitrile-butadiene-styrene copolymer over HZSM-5, HUSY and Al-MCM-41, Fuel 307(2022)121937. [9] M.A. Suwaid, M.A. Varfolomeev, A.A. Al-Muntaser, N.I. Abdaljalil, R. Djimasbe, N.O. Rodionov, A. Zinnatullin, F.G. Vagizov, Using the oil-soluble copper-based catalysts with different organic ligands for in situ catalytic upgrading of heavy oil, Fuel 312(2022)122914. [10] J.L. Mei, Y. Shi, C.K. Xiao, A.C. Wang, A.J. Duan, X.L. Wang, Hierarchically porous Beta/SBA-16 with different silica-alumina ratios and the hydrodesulfurization performances of DBT and 4,6-DMDBT, Pet. Sci. 19(2022)375-386. [11] U.R. Pokharel, F.R. Fronczek, A.W. Maverick, Retraction Note:Reduction of carbon dioxide to oxalate by a binuclear copper complex, Nat. Commun. 12(1)(2021)1996. [12] H.J. Zhang, Y.Y. Hu, L.T. Wang, Y.K. Zhu, Z.B. Huang, P.Q. Yuan, Reaction kinetics analysis of heavy oil visbreaking with reduced diffusion limitation, J. Anal. Appl. Pyrolysis 159(2021)105296. [13] M.F. Chen, W.H. Chen, Y.F. Wang, M.C. Ding, Z.Y. Zhang, D.D. Liu, D.H. Mao, Hydrogen-Bonded amphiphilic polymer viscosity reducer for enhancing heavy oil recovery:Synthesis, characterization and mechanism, Eur. Polym. J. 180(2022)111589. [14] X. Zhong, J.T. Chen, R. An, K.K. Li, M.G. Chen, A state-of-the-art review of nanoparticle applications with a focus on heavy oil viscosity reduction, J. Mol. Liq. 344(2021)117845. [15] C. Xue, Research and application of enhanced oil recovery technology for super-heavy oil reservoirs, China Oil Gas 28(2021)58-62. [16] Y.Q. Ren, S.Q. Xia, Synthesis and mechanism analysis of a new oil soluble viscosity reducer for flow improvement of Chenping heavy oil, Chin. J. Chem. Eng. 45(2022)58-67. [17] M. Affandy, C. Zhu, M. Swita, B. Hofstad, D. Cronin, R. Elander, V. Lebarbier Dagle, Production and catalytic upgrading of 2, 3-butanediol fermentation broth into sustainable aviation fuel blendstock and fuel properties measurement, Fuel 333(2023)126328. [18] Y.L. Chen, Y.Q. Wang, J.Y. Lu, C. Wu, The viscosity reduction of nano-kegginK3PMo12O40 in catalytic aquathermolysis of heavy oil, Fuel 88(8)(2009)1426-1434. [19] Y. Xu, C. Ayala-Orozco, P.T. Chiang, M. Shammai, M.S. Wong, Understanding the role of iron (III) tosylate on heavy oil viscosity reduction, Fuel 274(2020)117808. [20] X.D. Wang, X.R. Li, S. Liu, H.F. Zhou, Q.Y. Li, J.J. Yang, Cis-9-Octadecenylamine modified ferric oxide and ferric hydroxide for catalytic viscosity reduction of heavy crude oil, Fuel 322(2022)124159. [21] N. Li, H. Ke, T.Y. Wang, S.Q. Xia, Recyclable surface-functionalized Fe3O4 particles for heavy oil viscosity reduction, J. Petrol. Sci. Eng. 211(2022)110112. [22] P.W. Xiao, H. Li, P.M. Wang, B.L. Liu, W.D. Jing, L.P. He, R.W. Wang, X. Han, Z.T. Zhang, S.L. Qiu, J.H. Luo, Functionalized hierarchical ZSM-5 zeolites for the viscosity reduction of heavy oil at low temperature, Chem. Res. Chin. Univ. 38(4)(2022)1083-1088. [23] T. Liang, J.R. Hou, M. Qu, J.X. Xi, I. Raj, Application of nanomaterial for enhanced oil recovery, Petrol. Sci. 19(2)(2022)882-899. [24] Q.Y. Wang, J. Liu, Y.D. Li, Z.C. Lou, Y.J. Li, A literature review of MOF derivatives of electromagnetic wave absorbers mainly based on pyrolysis, Int. J. Miner. Metall. Mater. 30(3)(2023)446-473. [25] Z.G. Gao, K. Yang, Z.H. Zhao, D. Lan, Q. Zhou, J.Q. Zhang, H.J. Wu, Design principles in MOF-derived electromagnetic wave absorption materials:Review and perspective, Int. J. Miner. Metall. Mater. 30(3)(2023)405-427. [26] X.M. Wang, C.L. Wen, Y. Fan, Synthesis of hierarchical SAPO-11-based catalysts with Al-based metal-organic framework derivative as mesoporogen to improve n-decane branched isomerization, Petrol. Sci. 19(6)(2022)3171-3181. [27] Y.M. Wang, Y. Xu, X.X. Zhang, Y.F. Cui, Q.Q. Liang, C.S. Liu, X.N. Wang, S.Q. Wu, R.S. Yang, Single nano-sized metal-organic framework for bionanoarchitectonics with in vivo fluorescence imaging and chemophotodynamic therapy, Nanomaterials 12(2)(2022)287. [28] H. Izadi, M. Baghdadi, M. Pazoki, Catalytic upgrading of crude tire oil produced from hydrothermal liquefaction of scrap tire using Pd/Al2O3 nanocomposite, Fuel 332(2023)126125. [29] A. Hart, Modern techniques to minimize catalyst deactivation due to coke deposition in catalytic upgrading of heavy oil in situ processes, Petrol. Chem. 62(7)(2022)714-731. [30] P. Wang, N. Ding, Y. Wang, Y. Dang, D. Han, Y. Wei, Co-MOF derived NiCo-LDH three-dimensional nanostructure on carbon cloth for high-performance supercapacitors, J. Harbin Inst. Technol. 29(6)(2022)1-15. [31] S. Dong, H.W. Niu, L.W. Sun, S.X. Zhang, D.Q. Wu, Z. Yang, M. Xiang, Highly dense Ni-MOF nanoflake arrays supported on conductive graphene/carbon fiber substrate as flexible microelectrode for electrochemical sensing of glucose, J. Electroanal. Chem. 911(2022)116219. [32] K. Sonibare, G. Rucker, L.Q. Zhang, Molecular dynamics simulation on vegetable oil modified model asphalt, Constr. Build. Mater. 270(2021)121687. [33] D.Q. Sun, T.B. Lin, X.Y. Zhu, Y. Tian, F.L. Liu, Indices for self-healing performance assessments based on molecular dynamics simulation of asphalt binders, Comput. Mater. Sci. 114(2016)86-93. [34] H.Y. Yang, C.L. Wang, Q. Ren, L.X. Wang, X.M. Yan, Influence of oxygencontaining functional groups on asphaltene self-diffusion coefficient in asphaltene-xylene systems, China Pet. Process. Petrochem. Technol. 24(2)(2022)118-125. |